www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionInduktionsbeweis mit Folge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Induktion" - Induktionsbeweis mit Folge
Induktionsbeweis mit Folge < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis mit Folge: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:03 Di 19.03.2013
Autor: DepressiverRoboter

Aufgabe
Seien [mm] a_{0} = 0, a_{1} = 1 [/mm] und [mm]a_{n} = \bruch {a_{n-1} + a_{n-2}}{2} [/mm] fuer alle [mm] n \ge 2 [/mm]

Beweisen sie mit Induktion nach n, dass [mm] a_{n+1} - a_{n} = \bruch {{-1}^n}{{2}^n} [/mm] ist. Benutzen sie dieses Ergebnis um zu zeigen, dass [mm] a_{n} [/mm] eine Cauchyfolge ist.

Hallo alle zusammen. Ich haenge da grad am Induktionsbeweis, ich hab sogar einen Loesungsvorschlag dafuer zur Hand, weiss an einer Stelle aber nicht wie die auf ein Zwischenergebnis kommen. Deswegen wollte ich mal nachfragen ob einer von euch das sieht.

Der Induktionsanfang ist mir ja soweit klar, deswegen gleich zum Schritt:

Laut Loesungsbuch: [mm] a_{n+2} - a_{n+1} = \bruch {a_{n+1} + a_{n} - 2*a_{n+1}}{2} [/mm]

Ich versteh nicht wie die da draufkommen! Wenn ich ganz normal [mm] a_{n+2} - a_{n+1} [/mm] rechne, komm ich auf:
[mm] a_{n+2} = \bruch {a_{n+1} + a_{n}}{2} [/mm] und auf
[mm] a_{n+1} = \bruch {a_{n} + a_{n-1}}{2} [/mm] also auf
[mm] a_{n+2} - a_{n+1} = \bruch {a_{n+1} + a_{n} - a_{n} - a_{n-1}}{2} = \bruch {a_{n+1} + a_{n-1}}{2} [/mm]

Was mach ich falsch? bzw was muss ich umformen, um auf das Zwischenergebnis des Loesungsbuches zu kommen?

Es geht hier momentan gar nicht um die "ganze" Aufgabe sondern nur m diesen kleinen Schritt, waere toll wenn mir jemand sagen koennte wie die da draufkommen. Vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktionsbeweis mit Folge: Vorzeichenfehler
Status: (Antwort) fertig Status 
Datum: 18:12 Di 19.03.2013
Autor: Loddar

Hallo DepressiverRoboter!


> Laut Loesungsbuch: [mm]a_{n+2} - a_{n+1} = \bruch {a_{n+1} + a_{n} - 2*a_{n+1}}{2}[/mm]

Hier kommt man hin, wenn man setzt:  [mm]\blue{a_{n+2}}-\green{a_{n+1}} \ = \ \blue{\bruch{a_{n+1}+a_n}{2}}-\green{a_{n+1}} \ = \ ...[/mm]
Und nun auf einem Bruchstrich zusammenfassen.


> Ich versteh nicht wie die da draufkommen! Wenn ich ganz
> normal [mm]a_{n+2} - a_{n+1} [/mm] rechne, komm ich auf:
>  [mm]a_{n+2} - a_{n+1} = \bruch {a_{n+1} + a_{n} - a_{n} - a_{n-1}}{2} = \bruch {a_{n+1} + a_{n-1}}{2}[/mm]

Hier muss es ganz am Ende [mm]... \ = \ \bruch{a_{n+1} \ \red{-} \ a_{n-1}}{2}[/mm] lauten, dann passt es auch mit der Musterlösung zusammen.


Gruß
Loddar


Bezug
                
Bezug
Induktionsbeweis mit Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 Di 19.03.2013
Autor: DepressiverRoboter

Ahh vielen Dank Loddar, haett ich auch selber draufkommen koennen den Teil [mm] a_{n+1} [/mm] nicht weiter aufzusplitten.
So macht das ganze natuerlich Sinn.

Was den Vorzeichenfehler angeht: da hab ich beim Stellen der Frage falsch abgetippt... ;)

vielen Dank fuer die rasche Antwort! Die Frage ist damit geklaert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]