www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionInduktionsschritt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Induktionsschritt
Induktionsschritt < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsschritt: weiß nich wie ich beginnen sol
Status: (Frage) beantwortet Status 
Datum: 11:44 Fr 28.03.2008
Autor: hallihallo

Aufgabe
Bestimmen sie, für welche [mm] n\le \IN [/mm] folgende Ungleichung gilt

[mm]n!\le (\bruch{n}{2})^{n}[/mm]

(Hinweis: Sollten Sie im Induktionsschritt die Ungleichung [mm]n^n\le\bruch{1}{2}(n+1)^n[/mm]  brauchen, zeigen Sie diese mit Hilfe der Bernouilli-Ungleichung

Hallo zusammen ich bräuchte mal starthilfe für diese Aufgabe, weiß nicht wirklich wie ich beginnen soll...



vieln dank schonmal fürs nachdenken^^







        
Bezug
Induktionsschritt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:07 Fr 28.03.2008
Autor: Marcel

Hallo,

> Bestimmen sie, für welche [mm]n \red{\le} \IN[/mm]

$n [mm] \blue{\in} \IN$ [/mm]

> folgende Ungleichung
> gilt
>  
> [mm]n!\le (\bruch{n}{2})^{n}[/mm]
>  
> (Hinweis: Sollten Sie im Induktionsschritt die Ungleichung
> [mm]n^n\le\bruch{1}{2}(n+1)^n[/mm]  brauchen, zeigen Sie diese mit
> Hilfe der Bernouilli-Ungleichung
>  Hallo zusammen ich bräuchte mal starthilfe für diese
> Aufgabe, weiß nicht wirklich wie ich beginnen soll...
>  
>
>
> vieln dank schonmal fürs nachdenken^^

Du musst erstmal herausfinden, für welche $n [mm] \in \IN$ [/mm] die Behauptung wohl stimmt. Für $n=1$ passt's nicht, da [mm] $1!\le \left(\frac{1}{2}\right)^1 \gdw [/mm] 1 [mm] \le \frac{1}{2}$, [/mm] was sicherlich falsch ist.
Da musst Du halt ein wenig testen...

Ich denke, dass die Behauptung wohl für alle $n [mm] \ge [/mm] 6$ gelten wird.

Das heißt:
Behauptung:
Für alle $n [mm] \in \IN_{\ge 6}$ [/mm] gilt $n! [mm] \le \left(\frac{n}{2}\right)^n$ [/mm]

Und das solltest Du nun per Induktion beweisen, was nun Deine Aufgabe ist. Wenn etwas unklar ist, dann frage bitte nach, aber es wurde ja quasi schon ein Hinweis zu dem Induktionsschritt gegeben. (Ich habe den Beweis nun selbst noch nicht geführt, daher weiß ich nicht, ob der Hinweis wirklich nötig ist oder man auch ohne auskommt. Jedenfalls kann es sein, dass diese Hilfsungleichung bei einer bestimmten Vorgehensweise im Induktionsschritt hilfreich ist.)

Noch zu dem Tipp:
Die Bernoulli-Ungleichung lautet übrigens:

Für jedes $r [mm] \ge [/mm] -1$ und $m [mm] \in \IN_0$ [/mm] gilt:

[mm] $(1+r)^m \ge [/mm] 1+m*r$

Und wenn Du die Hilfsungleichung

[mm] $n^n \le \frac{1}{2}(n+1)^n$ [/mm]

zeigen willst, wirst Du dabei wohl die Bernoulli-Ungleichung brauchen, denn:

[mm] $n^n \le \frac{1}{2}(n+1)^n$ [/mm]

[mm] $\gdw$ [/mm] $2 [mm] \le \left(1+\frac{1}{n}\right)^n$ [/mm]

Und die Richtigkeit der letzten Ungleichung erkennst Du eben mit Bernoulli mit [mm] $r:=\frac{1}{n}$ [/mm] (was $> 0 [mm] \ge [/mm] -1$ für jedes $n [mm] \in \IN$ [/mm] ist) und $m:=n$.

P.S.: Also der Anfang des Induktionsbeweises sollte so aussehen:
Für $n=6$ stimmt die Ungleichung, da ...

I.V. Sei nun $n [mm] \in \IN_{\ge 6}$ [/mm] mit [mm] $(\*)$ [/mm] $n! [mm] \le \left(\frac{n}{2}\right)^n$ [/mm]

$n [mm] \mapsto [/mm] n+1$: Zu zeigen: Dann gilt $(n+1)! [mm] \le \left(\frac{n+1}{2}\right)^{n+1}$ [/mm]

Nun gibt es zwei Wege:

1. Weg:
Fange an mit:

Es gilt:

$(n+1)!=n!*(n+1)$ und  schätze dieses nun nach oben ab unter Verwendung von [mm] $(\*)$, [/mm] also $n! [mm] \le \left(\frac{n}{2}\right)^n$, [/mm] in der Hoffnung, dass man eine Ungleichungskette erhält, an deren Ende [mm] $\le \left(\frac{n+1}{2}\right)^{n+1}$ [/mm] steht.

2. Weg:
Man könnte anfangen mit:

Es gilt
[mm] $\left(\frac{n+1}{2}\right)^{n+1}=\left(\frac{n+1}{2}\right)^n*\frac{n+1}{2}$ [/mm]

und dieses solltest Du dann nach unten so abschätzen, dass man irgendwann [mm] $(\*)$, [/mm] also die I.V., benutzen kann, und dass man so eine Ungleichungskette erhält, an deren Ende [mm] $\ge [/mm] (n+1)!$ steht.

Und bitte: Wenn beide Wege klappen: Einer reicht ;-) Du kannst Dich also getrost für einen entscheiden; ich hoffe, dass Du wenigstens einen hinbekommst ;-)

Gruß,
Marcel

Bezug
                
Bezug
Induktionsschritt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:06 Fr 28.03.2008
Autor: hallihallo

danke!

werd mich dann mal da wieder ransetzen^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]