www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionInduktionsschritt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Induktionsschritt
Induktionsschritt < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsschritt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Di 10.05.2011
Autor: Nerix

Aufgabe
zu zeigen Mittels Induktion:
[mm] \produkt_{i=1}^{n} [/mm] (1+ai) [mm] \ge [/mm] 1 + [mm] \summe_{i=1}^{n} [/mm] ai

Hallo,
ich habe hier ein kleines Problem mit dem Induktionsschritt!
Induktionsstart und Induktionsannahme sind bewiese und folgendes ist mein Induktionsschrit:

[mm] \produkt_{i=1}^{n+1} [/mm] (1+ai)  = [mm] \produkt_{i=1}^{n} [/mm] (1+ai) * (1+a1) [mm] \ge [/mm] (1+ [mm] \summe_{i=1}^{n} [/mm] ai ) * [mm] \produkt_{i=1}^{1} [/mm] (1+ai) = (1+ [mm] \summe_{i=1}^{n} [/mm] ai ) * (1+a1)
nun komme ich nicht weiter.... Kann wer helfen? Am Ende muss ja 1 + [mm] \summe_{i=1}^{n+1} [/mm] ai stehen.

Grüße Nerix

        
Bezug
Induktionsschritt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Di 10.05.2011
Autor: fred97


> zu zeigen Mittels Induktion:
>  [mm]\produkt_{i=1}^{n}[/mm] (1+ai) [mm]\ge[/mm] 1 + [mm]\summe_{i=1}^{n}[/mm] ai


Und was ist über die [mm] a_i [/mm] vorausgesetzt ????

>  Hallo,
>  ich habe hier ein kleines Problem mit dem
> Induktionsschritt!
>  Induktionsstart und Induktionsannahme sind bewiese und
> folgendes ist mein Induktionsschrit:
>  
> [mm]\produkt_{i=1}^{n+1}[/mm] (1+ai)  = [mm]\produkt_{i=1}^{n}[/mm] (1+ai) *
> (1+a1) [mm]\ge[/mm] (1+ [mm]\summe_{i=1}^{n}[/mm] ai ) * [mm]\produkt_{i=1}^{1}[/mm]
> (1+ai) = (1+ [mm]\summe_{i=1}^{n}[/mm] ai ) * (1+a1)


Das fängt schon falsch an !

[mm] $\produkt_{i=1}^{n+1} (1+a_i)=( \produkt_{i=1}^{n} (1+a_i))*(1+a_{n+1}) \ge (1+\(\sum_{i=1}^{n} a_i)*(1+a_{n+1}) =1+\sum_{i=1}^{n}a_i+a_{n+1}+A$ [/mm]

Was ist A ? Und warum ist A [mm] \ge [/mm] 0 ?

FRED

>  nun komme ich nicht weiter.... Kann wer helfen? Am Ende
> muss ja 1 + [mm]\summe_{i=1}^{n+1}[/mm] ai stehen.
>  
> Grüße Nerix


Bezug
                
Bezug
Induktionsschritt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:28 Di 10.05.2011
Autor: Nerix

Hallo,
entschuldigung,stimmt ich muss ja sagen was "a "ist^^ Also a1....an ist eine Folge reeller Zahlen [mm] \ge [/mm] 0 !

Ok,auf deine Antwort bezogen :
A dürfte hier das Produkt von [mm] \summe_{i=1}^{n} [/mm] ai und [mm] a_n_+_1 [/mm] sein ...da es sich um reelle zahlen > 0 handelt wird dieses Produkt auch > 0 sein! Könnte somit eine Resttermabschätzung sein?????????????

Grüße


Bezug
                        
Bezug
Induktionsschritt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Di 10.05.2011
Autor: fred97


> Hallo,
>  entschuldigung,stimmt ich muss ja sagen was "a "ist^^ Also
> a1....an ist eine Folge reeller Zahlen [mm]\ge[/mm] 0 !
>  
> Ok,auf deine Antwort bezogen :
>  A dürfte hier das Produkt von [mm]\summe_{i=1}^{n}[/mm] ai und
> [mm]a_n_+_1[/mm] sein ...da es sich um reelle zahlen > 0 handelt
> wird dieses Produkt auch > 0 sein!

    [mm] \ge [/mm] 0

> Könnte somit eine
> Resttermabschätzung sein?????????????

Ja, dann mach mal.

FRED

>  
> Grüße
>  


Bezug
                                
Bezug
Induktionsschritt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Di 10.05.2011
Autor: Nerix

Hallo,

wie?dann mach mal? was soll ich hier noch tun? das Produkt ausrechnen?Das würde mir doch nichts bringen? Ich hab keine Ahnung wie man eine Resttermabschätzung math. durchführt.Sorry

Grüße

Bezug
                                        
Bezug
Induktionsschritt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Di 10.05.2011
Autor: fred97


> Hallo,
>  
> wie?dann mach mal? was soll ich hier noch tun? das Produkt
> ausrechnen?Das würde mir doch nichts bringen? Ich hab
> keine Ahnung wie man eine Resttermabschätzung math.
> durchführt.Sorry

Da A [mm] \ge [/mm] 0 ist folgt:

$ [mm] \produkt_{i=1}^{n+1} (1+a_i)=( \produkt_{i=1}^{n} (1+a_i))\cdot{}(1+a_{n+1}) \ge (1+\(\sum_{i=1}^{n} a_i)\cdot{}(1+a_{n+1}) =1+\sum_{i=1}^{n}a_i+a_{n+1}+A \ge 1+\sum_{i=1}^{n}a_i+a_{n+1}= 1+\sum_{i=1}^{n+1}a_i$ [/mm]

Jetzt hab ich für Dich alles erledigt. Also das nächste mal weniger pampig, gell ?

FRED


>  
> Grüße


Bezug
                                                
Bezug
Induktionsschritt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:47 Di 10.05.2011
Autor: Nerix

Hey

des sollte absolut nicht pampig klingen!!!!!!!!!!!!!Sorry falls dus so verstanden hast!!!Ich wusste nur nicht,was du wolltest von mir. Des was du da geschrieben hast hab ich im Kopf als selbstverständlich gefolger,dass mans dann einfach als > [mm] 1+\sum_{i=1}^{n+1}a_i [/mm] ansehn kann.

Ganz lieb Danke ,etz hab ich meinen Fehler verstanden,hab am Anfang statt [mm] a_n_+_1 [/mm] fälschlicherweise [mm] a_1 [/mm] angenommen....


Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]