www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraInfimum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Infimum
Infimum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Infimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:20 Di 27.06.2006
Autor: ANjaan

Aufgabe
Jede nichtleere, nach unten beschränkte Teilmenge der reellen Zahlen besitzt ein Infimum (d. h. eine grösste untere Schranke).
Bemerkung: Für [mm] M\subset\IC [/mm]   R nichtleer und nach unten beschränkt betrachten Sie
M*:={−x | x ∈ M}. Dann ist –sup(M*) größte untere Schranke von M.


Hallo ihr alle da draußen im MatheRaum, ich grüße euch! Ich brüte hier gerade über der Aufgabe und komme damit in keinster Weise klar.

Was könnt ihr mir denn so an Tips geben? Ich bin auch für den kleinsten Anstoß dankbar!

Mit ganz lieben Grüßen und vielem Dank vorab
eure ANjaan

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
Infimum: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Di 27.06.2006
Autor: just-math

Hallo aus den Weiten des Mathe-Raumes,

sei also [mm] M\subseteq \IR [/mm] und  sein [mm] L\in \IR [/mm] so, dass für alle [mm] x\in [/mm] M [mm] L\leq [/mm] x gilt.

Dann heisst ja [mm] I\in\IR [/mm] Infimum zu M genau dann, wenn

(1) [mm] \forall x\in [/mm] M [mm] I\leq [/mm] x und weiterhin

(2) [mm] \forall y\in \IR\:\: ((\forall x\in M\: y\leq x)\:\Longrightarrow\: y\leq [/mm] I)

Annahme: M hat kein Infimum. Dann existiert zu jeder unteren Schranke L von M ein L'>L, das auch untere Schranke von M ist.
Wir definieren eine aufsteigende Folge von unteren Schranken für M, hierzu benotigen wir evtl. das Axiom of Choice (wie heisst den da
auf Deutsch ? ). Dann können wir zeigen, dass dies eine Cauchy-Folge sein muss,und Cauchy-Folgen in [mm] \IR [/mm] sind konvergent.

hey, das war mal so eine idee dazu, es geht sicher auch anders, aber so solltest du klarkommen.

Viele Grüsse

just-math

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]