www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesInfimum und Supremum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Infimum und Supremum
Infimum und Supremum < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Infimum und Supremum: Hilfe bei der Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:06 Mo 26.10.2015
Autor: rsprsp

Aufgabe
Bestimmen Sie Infimum, Supremum, Minimum und Maximum der folgenden Mengen, falls diese existieren:

[mm] M_1 [/mm] = { x [mm] \in \IR [/mm] | [mm] 5x^2 [/mm] − 30 ≤ −5x }

Ich habe jetzt umgeformt:

[mm] 5x^2 [/mm] − 30 ≤ −5x    | +5x
[mm] 5x^2 [/mm] + 5x -30 ≤ 0  | :5
[mm] x^2 [/mm] + x - 6 ≤ 0

Die Nullstellen der Funktion [mm] x^2 [/mm] + x - 6 sind [mm] x_1 [/mm] = 3 [mm] x_2 [/mm] = -2

Könnte mir jemand mal helfen wie ich das Infimum, Supremum, Minimum und Maxiumum beweise ?


        
Bezug
Infimum und Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Mo 26.10.2015
Autor: DieAcht


> Die Nullstellen der Funktion [mm]x^2[/mm] + x - 6 sind [mm]x_1[/mm] = 3 [mm]x_2[/mm] = -2

Du meinst [mm] $x_1=-3$ [/mm] und [mm] $x_2=2$. [/mm]

> Könnte mir jemand mal helfen wie ich das Infimum,
> Supremum, Minimum und Maxiumum beweise ?

Wie sieht denn nun [mm] M_1 [/mm] aus?


Gruß
DieAcht

Bezug
                
Bezug
Infimum und Supremum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 Mo 26.10.2015
Autor: rsprsp

[mm] M_1 [/mm] = {-3,2}

Dann ist [mm] min(M_1)=inf(M_1)=-3 [/mm] und [mm] max(M_1)=max(M_1)=2 [/mm] ?

Bezug
                        
Bezug
Infimum und Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Mo 26.10.2015
Autor: DieAcht

Sorry, ich war zu voreilig.

> [mm]M_1[/mm] = {-3,2}

Es ist

      [mm] $\{x\in\IR\mid 5x^2-30=-5x\}=\{-3,2\}$. [/mm]

Nun überlege noch einmal bzgl.

      [mm] $M_1=\{x\in\IR\mid 5x^2-30\le -5x\}$. [/mm]

Bezug
                                
Bezug
Infimum und Supremum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 Mo 26.10.2015
Autor: rsprsp


> Sorry, ich war zu voreilig.
>  
> > [mm]M_1[/mm] = {-3,2}
>  
> Es ist
>  
> [mm]\{x\in\IR\mid 5x^2-30=-5x\}=\{-3,2\}[/mm].
>  
> Nun überlege noch einmal bzgl.
>  
> [mm]M_1=\{x\in\IR\mid 5x^2-30\le -5x\}[/mm].


Es ist [mm] min(M_1)=inf(M_1)=-3 [/mm] und [mm] max(M_1)=max(M_1)=2, [/mm]
da [mm] 5x^2-30\le [/mm] -5x => [mm] 5x^2+5x-30 \le [/mm] 0. Somit bewegt sich die Funktion im Bereich [mm] x\le [/mm] 0, also -3 [mm] \le [/mm] y [mm] \le [/mm] 2

Bezug
                                        
Bezug
Infimum und Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 Mo 26.10.2015
Autor: DieAcht


> > Sorry, ich war zu voreilig.
>  >  
> > > [mm]M_1[/mm] = {-3,2}
>  >  
> > Es ist
>  >  
> > [mm]\{x\in\IR\mid 5x^2-30=-5x\}=\{-3,2\}[/mm].
>  >  
> > Nun überlege noch einmal bzgl.
>  >  
> > [mm]M_1=\{x\in\IR\mid 5x^2-30\le -5x\}[/mm].
>
>
> Es ist [mm]min(M_1)=inf(M_1)=-3[/mm] und [mm]max(M_1)=max(M_1)=2,[/mm]

Du meinst [mm] $\max(M_1)=\sup(M_1)=2$. [/mm]

Begründung?

>  da [mm]5x^2-30\le[/mm] -5x => [mm]5x^2+5x-30 \le[/mm] 0.

Ja.

> Somit bewegt sich die Funktion im Bereich [mm]x\le[/mm] 0,

Diesem Argument kann ich leider nicht folgen.

> also -3 [mm]\le[/mm] y [mm]\le[/mm] 2

Ja, es gilt [mm] $M_1=\{y\in\IR\mid -3\le y\le 2\}=[-3,2]$. [/mm]

Bezug
                                                
Bezug
Infimum und Supremum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Mo 26.10.2015
Autor: rsprsp


> > > Sorry, ich war zu voreilig.
>  >  >  
> > > > [mm]M_1[/mm] = {-3,2}
>  >  >  
> > > Es ist
>  >  >  
> > > [mm]\{x\in\IR\mid 5x^2-30=-5x\}=\{-3,2\}[/mm].
>  >  >  
> > > Nun überlege noch einmal bzgl.
>  >  >  
> > > [mm]M_1=\{x\in\IR\mid 5x^2-30\le -5x\}[/mm].
> >
> >
> > Es ist [mm]min(M_1)=inf(M_1)=-3[/mm] und [mm]max(M_1)=max(M_1)=2,[/mm]
>  
> Du meinst [mm]\max(M_1)=\sup(M_1)=2[/mm].
>  
> Begründung?
>  
> >  da [mm]5x^2-30\le[/mm] -5x => [mm]5x^2+5x-30 \le[/mm] 0.

>
> Ja.
>  
> > Somit bewegt sich die Funktion im Bereich [mm]x\le[/mm] 0,
>  
> Diesem Argument kann ich leider nicht folgen.

Ich meinte, dass die Funktion auf den Argument beschränkt ist.

>  
> > also -3 [mm]\le[/mm] y [mm]\le[/mm] 2
>
> Ja, es gilt [mm]M_1=\{y\in\IR\mid -3\le y\le 2\}=[-3,2][/mm].


Habe noch eine Menge
[mm] M_2 [/mm] = [mm] \bruch{x^2-9}{x-5} \ge [/mm] 2
Die Nullstellen von [mm] x^2-9 [/mm] sind [mm] x_1 [/mm] = 3 und [mm] x_2 [/mm] = -3 und von x-5, [mm] x_3 [/mm] = 5
Also ist die Funktion [mm] \bruch{x^2-9}{x-5} [/mm] bei x=5 nicht definiert
D.h. [mm] M_2 [/mm] = [mm] (5,\infty) [/mm]
D.h. [mm] inf(M_2)=5 min(M_2), max(M_2) [/mm] und [mm] sup(M_2) [/mm] sind nicht definiert?

Wie kann ich das noch besser begründen ?


Bezug
                                                        
Bezug
Infimum und Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Mo 26.10.2015
Autor: leduart

Auch deine neue meng würde ich auf < bzw >0 umschreiben. mit der Fallunterscheidung x<5 und x>5
Gruß leduart

Bezug
                                                        
Bezug
Infimum und Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Di 27.10.2015
Autor: fred97


> > > > Sorry, ich war zu voreilig.
>  >  >  >  
> > > > > [mm]M_1[/mm] = {-3,2}
>  >  >  >  
> > > > Es ist
>  >  >  >  
> > > > [mm]\{x\in\IR\mid 5x^2-30=-5x\}=\{-3,2\}[/mm].
>  >  >  >  
> > > > Nun überlege noch einmal bzgl.
>  >  >  >  
> > > > [mm]M_1=\{x\in\IR\mid 5x^2-30\le -5x\}[/mm].
> > >
> > >
> > > Es ist [mm]min(M_1)=inf(M_1)=-3[/mm] und [mm]max(M_1)=max(M_1)=2,[/mm]
>  >  
> > Du meinst [mm]\max(M_1)=\sup(M_1)=2[/mm].
>  >  
> > Begründung?
>  >  
> > >  da [mm]5x^2-30\le[/mm] -5x => [mm]5x^2+5x-30 \le[/mm] 0.

> >
> > Ja.
>  >  
> > > Somit bewegt sich die Funktion im Bereich [mm]x\le[/mm] 0,
>  >  
> > Diesem Argument kann ich leider nicht folgen.
>  
> Ich meinte, dass die Funktion auf den Argument beschränkt
> ist.
>  
> >  

> > > also -3 [mm]\le[/mm] y [mm]\le[/mm] 2
> >
> > Ja, es gilt [mm]M_1=\{y\in\IR\mid -3\le y\le 2\}=[-3,2][/mm].
>
>
> Habe noch eine Menge
>  [mm]M_2[/mm] = [mm]\bruch{x^2-9}{x-5} \ge[/mm] 2
>  Die Nullstellen von [mm]x^2-9[/mm] sind [mm]x_1[/mm] = 3 und [mm]x_2[/mm] = -3 und
> von x-5, [mm]x_3[/mm] = 5
>  Also ist die Funktion [mm]\bruch{x^2-9}{x-5}[/mm] bei x=5 nicht
> definiert
>  D.h. [mm]M_2[/mm] = [mm](5,\infty)[/mm]


Wieso ???  Das geht mir zu schnell. Falsch ist es auch. Z.B. ist 1 [mm] \in M_2 [/mm]

FRED


> D.h. [mm]inf(M_2)=5 min(M_2), max(M_2)[/mm] und [mm]sup(M_2)[/mm] sind nicht
> definiert?
>  
> Wie kann ich das noch besser begründen ?
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]