www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenInhomogener Lösungsansatz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Inhomogener Lösungsansatz
Inhomogener Lösungsansatz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inhomogener Lösungsansatz: Lösen eine DGL
Status: (Frage) beantwortet Status 
Datum: 12:18 So 24.10.2010
Autor: Mitschy

Aufgabe
Analytische Lösung von:
[mm] T*\bruch{dx(t)}{dt}+x(t)=K*u(t) [/mm]

x(0)=0

1)homogener Ansatz
2)inhomogener Ansatz

Hallo Gemeinde,

die Erste Aufgabe (homogener Ansatz) ist kein Problem.

1)
[mm] T*\bruch{dx(t)}{dt}+x(t)=0 [/mm]
Lösung:
[mm] x_{h}=x=C_{1}*e^{-\bruch{t}{T}} [/mm]

Bei dem inhomogener Ansatz mach ich es mir irgendwie schwer, da u(t) eine allgemeine Formel ist.

2) [mm] x=x_{h}+x_{p} [/mm]

[mm] x_{p}=K*u(t) [/mm]

Lösungsansatz:
Ab hier bin ich mir schon nicht sicher, da ich eigentlich den Lösungsansatz einer linearen Störfunktion nutze.

[mm] x_{p}=a*u(t)+b [/mm]

[mm] x_{p}^{'}=a*\bruch{u(t)}{dt} [/mm]

eingesetzt:

[mm] T*a*\bruch{u(t)}{dt}+a*u(t)+b=K*u(t) [/mm]

Jetzt sollte der Koeffizientenvergleich folgen aber ab hier geht mein Weg eigentlich ins Nichts.

Ich hoffe es kann mir jemand einen entscheidenden Tipp geben.

Danke im voraus.

Gruß Michael  

        
Bezug
Inhomogener Lösungsansatz: Lösung des Taschenrechners
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:26 So 24.10.2010
Autor: Mitschy

Wenn ich die gesamte Formel mit dem Taschenrechner lösen lasse kommt folgende Lösung raus:

[mm] x=\bruch{K*e^{-t/T}*\integral_{}^{}{(e^{t/T}*u(t)) dt}}{T}+C_{1}*e^{-t/T} [/mm]


Also ist [mm] x_{p}=\bruch{K*e^{-t/T}*\integral_{}^{}{(e^{t/T}*u(t)) dt}}{T} [/mm]

Aber wie kommt man ohne den TR auf diese Lösung?

Bezug
        
Bezug
Inhomogener Lösungsansatz: Variation der Konstanten
Status: (Antwort) fertig Status 
Datum: 12:41 So 24.10.2010
Autor: moudi

Hallo Michael

Hier kommt man mit der "Variation der Konstanten" ans Ziel.
Die homogene Lösung ist ja von der Form [mm] $c\cdot e^{-t/T}$. [/mm] Deshalb variiert man fuer die inhomogene Loesung die Konstante [mm] $c\to [/mm] c(t)$. Das in die DG eingesetzt ergibt dann eine neue DG fuer die Funktion $c(t)$, die "relativ einfach" zu loesen ist.

mfG Moudi

Bezug
                
Bezug
Inhomogener Lösungsansatz: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:12 So 24.10.2010
Autor: Mitschy

Daran hab ich gar nicht gedacht! Hab es jetzt schnell durchprobiert und komme genau auf die Lösung des Taschenrechners.

Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]