www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesInjektivität, Surjektivität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis-Sonstiges" - Injektivität, Surjektivität
Injektivität, Surjektivität < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität, Surjektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:24 Do 20.11.2008
Autor: Heureka89

Aufgabe
Ist die Funktion f: [mm] \IR \to \IR [/mm] mit [mm] f(x)=5*x^3-20*x+1 [/mm] injektiv oder surjektiv?

Also ich habe gezeigt, dass f(x) nicht streng monoton wachsend oder streng monoton fallend ist. Reicht es jetzt als Beweis, um zu zeigen, dass es nicht injektiv ist?
Eine andere Möglichkeit habe ich mir auch noch überlegt, aber ob das mathemathisch korrekt ist, weiß ich nicht. Also ich habe mir die Funktion ohne die 1 vorgestellt, da ja die 1 nur eine Verschiebung um eins nach oben bewirkt. Dann sieht man, dass die Funktion drei Nullstellen hat, also folgt daraus, dass die Funkrion nicht injektiv ist.

Allerdings habe ich keine Idee, wie man die Surjektivität hier untersuchen kann. Ein Tipp wäre sehr hilfreich

        
Bezug
Injektivität, Surjektivität: surjektiv
Status: (Antwort) fertig Status 
Datum: 21:40 Do 20.11.2008
Autor: Tommylee

Hi , verstehen wir das Ganze als eine Abbildung von X nach Y

also die Injektivität hast du sinngemäß richtig ausgeschlossen , denn es gibt verschiedene elemente x [mm] \in [/mm] X die auf das selbe element y [mm] \in [/mm] Y abgebildet werden.

Die Funktion ist surjektiv , da es zu jedem Element y [mm] \in [/mm] Y ein Element
x [mm] \in [/mm] X gibt mit f(x) = y .


liebe Grüße


Bezug
                
Bezug
Injektivität, Surjektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 Do 20.11.2008
Autor: Heureka89

Hallo,

danke erstmal für die schnelle Antwort.
Was ich nicht verstehe: wie zeige ich, dass es zu jedem y [mm] \in [/mm] Y ein x [mm] \in [/mm] X mit  f(x) = y gibt?

Bezug
                        
Bezug
Injektivität, Surjektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Do 20.11.2008
Autor: Tommylee

Hi ,

die Funktionswerte müssen den ganzen Zielraum in diesem Fall [mm] \IR [/mm]
beschreiben. zu jedem Element y [mm] \in \IR [/mm] muss es ein f(x) = y geben.

Die Funktion muss also gegen + und -  unendlich gehen
und jeden Wert dazwischen treffen . Das tut sie , wenn sie ........  ist

Und die Funktion  f(x) = [mm] 5x^{3} [/mm] - 20x + 1 ist eine ganz rationale Funktion
und ganz rationale Funktionen sind immer  ........

larifari : wenn man beim zeichnen die Kreide nicht absetzen muss

Stetigkeit habt doch schon gehabt



liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]