www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenInjektivität, Surjektivität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Relationen" - Injektivität, Surjektivität
Injektivität, Surjektivität < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität, Surjektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:19 Sa 24.10.2009
Autor: tower

Aufgabe
Untersuche die folgende Funktion auf Injektivität und Surjektivität:

[mm] f: \IN \to \IN: f(n) = n + (-1)^{n}[/mm]

Hallo,
habe mit dieser Aufgabe Probleme, weiss nicht wie ich hier vorgehen soll.

Injektivität bedeutet ja linkseindeutig
Surjektivität rechtstotal

Um welche Abbildung handelt es sich jetzt? Muss ich jetzt ein [mm] n \in \IN [/mm] nehmen und gucken welchen Funktionswert ich dann erhalte? und hierfür eine Kante von n nach f(n) setzen?

Wäre nett, wenn mir jemand hilft.

MfG, tower



        
Bezug
Injektivität, Surjektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Sa 24.10.2009
Autor: rainerS

Hallo!

> Untersuche die folgende Funktion auf Injektivität und
> Surjektivität:
>  
> [mm]f: \IN \to \IN: f(n) = n + (-1)^{n}[/mm]
>  
> Hallo,
>  habe mit dieser Aufgabe Probleme, weiss nicht wie ich hier
> vorgehen soll.
>  
> Injektivität bedeutet ja linkseindeutig
>  Surjektivität rechtstotal
>  
> Um welche Abbildung handelt es sich jetzt? Muss ich jetzt
> ein [mm]n \in \IN[/mm] nehmen und gucken welchen Funktionswert ich
> dann erhalte? und hierfür eine Kante von n nach f(n)
> setzen?

Im Prinzip ja. Allerdings wird die Sache einfacher indem du den Definitionsbereich der Funktion die Mengen der geraden und ungeraden natürlichen Zahlen zerlegst, die Eigenschaften der Funktion untersuchst und die beiden Ergebnisse zusammensetzt. Zum Beispiel ist f nur dann surjektiv, wenn die Vereinigung der beiden Bilder der Mengen der geraden und ungeraden natürlichen Zahlen gerade wieder [mm] $\IN$ [/mm] ergibt.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]