www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisInjetivität zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Injetivität zeigen
Injetivität zeigen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injetivität zeigen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:01 Fr 19.05.2017
Autor: studiseb

Aufgabe
Sei [mm] f:\ID\to\IC, f(z)=z+\bruch{1}{3}*e^z. [/mm]
Zeige, dass f injektiv ist.

Moin zusammen, wollte nur mal wissen ob ich hier den richtigen Ansatz gewäht habe, oder ob ich auf dem Holzweg bin. Vielen Dank!

Seien [mm] x,y\in\ID [/mm] und f(x)=f(y). Annahme [mm] x\not=y. [/mm]
OBdA sei x<y [mm] \Rightarrow [/mm] x<y und [mm] \bruch{1}{3}e^x<\bruch{1}{3}e^y, [/mm] da e streng monoton wachsend ist.

[mm] \Rightarrow x+\bruch{1}{3}e^x
Widerspruch zu f(x)=f(y)! Also x=y. Somti folgt die Behauptung und f ist injetktiv.

Kann ich das so machen?

LG


        
Bezug
Injetivität zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:17 Fr 19.05.2017
Autor: Diophant

Hallo,

> Sei [mm]f:\ID\to\IC, f(z)=z+\bruch{1}{3}*e^z.[/mm]
> Zeige, dass f injektiv ist.
> Moin zusammen, wollte nur mal wissen ob ich hier den
> richtigen Ansatz gewäht habe, oder ob ich auf dem Holzweg
> bin. Vielen Dank!

>

> Seien [mm]x,y\in\ID[/mm] und f(x)=f(y). Annahme [mm]x\not=y.[/mm]
> OBdA sei x<y [mm]\Rightarrow[/mm] x<y und
> [mm]\bruch{1}{3}e^x<\bruch{1}{3}e^y,[/mm] da e streng monoton
> wachsend ist.

>

> [mm]\Rightarrow x+\bruch{1}{3}e^x
> f(x)<f(y)

>

> Widerspruch zu f(x)=f(y)! Also x=y. Somti folgt die
> Behauptung und f ist injetktiv.

>

> Kann ich das so machen?

Nein. Der Begriff Monotonie sowie die Ordnungs- bzw. Totalordnungsrelation ergeben hier keinen Sinn, da wir uns in [mm] \IC [/mm] befinden!

Man könnte hier geometrisch argumentieren, indem man die Tatsache ausnutzt, dass die komplexe Exponentialfunktion in der komplexen Ebene stets eine Drehstreckung bewirkt.

Sonst wird man es nachrechnen müssen, also die Gleichung

[mm] z_1+\frac{1}{3}e^{z_1}=z_2+\frac{1}{3}e^{z_2} [/mm]

muss für ungleiche Paare [mm] (z_1,z_2) [/mm] zum Widerspruch gebracht werden. Dazu verwendet man am geschicktesten die Polardarstellung.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]