www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikInklusion Exklusion Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Inklusion Exklusion Beweis
Inklusion Exklusion Beweis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inklusion Exklusion Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Di 05.11.2019
Autor: Jellal

Hallo zusammen,


ich soll aus der Formel fuer Inklusion und Exklusion fuer den Schnitt von n Ereignissen die entsprechende Formel fuer die Vereinigung herleiten. Das scheint mir extrem ineffizient. Ich wuesste beispielsweise, wie man den Satz selbst mit Induktion beweist, nicht aber, wie man den einen aus dem anderen ableitet.

Aufgabenstellung im Anhang (die Formeln sind etwas zu lang zum Abtippen).


Man kann natuerlich hingehen und die erste Formel nach ihrem letzten Term umstellen. Aber dann muss man immer noch die ganzen Vereinigungen, die noch vorhanden sind, auch mit der ersten Formel umschreibe. Das fuehrt aber zu sehr langen Termen mit grossem Index-Wirrwarr.

Uebersehe ich etwas, bzw. ist diese Deduktion irgendwie trivial?


vG.

Jellal


[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Inklusion Exklusion Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Di 05.11.2019
Autor: HJKweseleit


> Hallo zusammen,
>  
>
> ich soll aus der Formel fuer Inklusion und Exklusion fuer
> den Schnitt von n Ereignissen die entsprechende Formel fuer
> die Vereinigung herleiten. Das scheint mir extrem
> ineffizient. Ich wuesste beispielsweise, wie man den Satz
> selbst mit Induktion beweist, nicht aber, wie man den einen
> aus dem anderen ableitet.
>  
> Aufgabenstellung im Anhang (die Formeln sind etwas zu lang
> zum Abtippen).
>  
>
> Man kann natuerlich hingehen und die erste Formel nach
> ihrem letzten Term umstellen. Aber dann muss man immer noch
> die ganzen Vereinigungen, die noch vorhanden sind, auch mit
> der ersten Formel umschreibe. Das fuehrt aber zu sehr
> langen Termen mit grossem Index-Wirrwarr.
>  
> Uebersehe ich etwas, bzw. ist diese Deduktion irgendwie
> trivial?
>  
>
> vG.
>  
> Jellal
>  
>
> [Dateianhang nicht öffentlich]


Ich sehe das so:

Die erste Formel lässt sich auch umformen zu
[mm] P(E_1 \cup E_2) [/mm] = [mm] P(E_1) [/mm] + [mm] P(E_2) -P(E_1 \cap E_2) [/mm]

Sie sieht damit genau so aus wie die Ausgangsformel, nur dass die Zeichen [mm] \cup [/mm] und [mm] \cap [/mm] vertauscht sind.

Da beim Induktionsbeweis für den Durchschnitt nur immer wieder von dieser Ausgangsformel gebrauch gemacht wurde, ohne die Unterschiede von [mm] \cup [/mm] und [mm] \cap [/mm] zu benutzen, muss der Induktionsbeweis für die Vereinigung formal zum selben Ergebnis führen, nur dass dabei überall [mm] \cup [/mm] und [mm] \cap [/mm] vertauscht sind.


Bezug
                
Bezug
Inklusion Exklusion Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:36 Mi 06.11.2019
Autor: Jellal

Hallo HJKweseleit,

danke dir!!!


Ich hab glatt zwei Stunden Formeln ineinander eingesetzt und Summen und Indizes hin- und her geschoben... totale Katastrophe.
Da sieht man, wie wichtig es ist, den Wald vor lauter Baeumen nicht zu uebersehen!


vG.

Jellal

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]