www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraInneres Produkt???
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Inneres Produkt???
Inneres Produkt??? < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inneres Produkt???: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Di 01.02.2005
Autor: MrPink

Hallo, ich habe folgende Aufgaben:

http://www.geocities.com/knusselfuppen/Unbenannt.JPG

Kann mir jemand vielleicht bei einer Aufgabe sagen, ob und warum es sich um ein inneres Produkt oder nicht handelt, die Restlichen versuche ich dann mal alleine

Danke im voraus

        
Bezug
Inneres Produkt???: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Di 01.02.2005
Autor: Stefan

Hallo!

Gut, dann mache ich dir die erste und dritte Aufgabe mal in Ansätzen vor.

1) Es gilt ja:

[mm] $\Phi(x,y) [/mm] = [mm] x_{{\cal B}}^T \cdot \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \cdot y_{{\cal B}}$, [/mm]

wobei [mm] $x_{{\cal B}}$ [/mm] bzw. [mm] $y_{{\cal B}}$ [/mm] die Koordinatenvektoren von $x$ bzw. $y$ bezüglich der Basis [mm] ${\cal B}$ [/mm] sind.

Die Bilinearität von [mm] $\Phi$ [/mm] ist offensichtlich, die Symmetrie von [mm] $\Phi$ [/mm] folgt unmittelbar aus der Symmetrie von [mm] $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. [/mm] Da [mm] $\red{\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}}$ [/mm] aber nicht positiv definit ist, ist auch [mm] $\Phi$ [/mm] nicht positiv definit.

3) Es handelt sich um kein inneres Produkt, da [mm] $\Phi$ [/mm] nicht positiv definit ist.

So gilt für die auf $[-1,1]$ stetige Funktion

$f(x) = [mm] \left\{ \begin{array}{ccc} x & , & x\in[-1,0),\\[5pt] 0 & , & x \in [0,1] \end{array} \right.$ [/mm]

offenbar [mm] $\Phi(f,f)=0$, [/mm] aber $f [mm] \ne [/mm] 0$.

Liebe Grüße
Stefan

Bezug
                
Bezug
Inneres Produkt???: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 Di 01.02.2005
Autor: MrPink

Ok, also sind 2 und 4 Innere Produkte:

2:
Ist Bilinear und nat. auch auch symmetrisch und positiv definit

4: Die funktion bildet von [0,1] ab und ist somit auch positiv definit

Bezug
                
Bezug
Inneres Produkt???: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 Di 01.02.2005
Autor: MrPink

Ich habe die Antworten jetzt im Internet abgeschickt, aber mir sagt der Test, dass 1.) keine Inneres Produkt ist :-( wieso ???

Bezug
                        
Bezug
Inneres Produkt???: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Di 01.02.2005
Autor: Stefan

Hallo!

Weil ich nicht richtig hingeschaut hatte, [sorry]!

Ich habe es jetzt verbessert.

Deine anderen beiden Antworten sind richtig (allerdings müsste 4), insbesondere die positive Definitheit noch besser begründet werden).

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]