www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenIntegrabilitätsbedingungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Integrabilitätsbedingungen
Integrabilitätsbedingungen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrabilitätsbedingungen: Angabenunklarheit
Status: (Frage) beantwortet Status 
Datum: 11:38 Mo 16.01.2012
Autor: clemenum

Aufgabe
Aufgabe zu Kurvenintegralen:
$f(x,y) := [mm] y^2, [/mm] g(x,y) := [mm] x^2 [/mm] $
$z(t) = (asin(t),b*cos(t)),$ [mm] $0\le [/mm] t [mm] \le 2\pi [/mm] $  
Man zeige: [mm] $\int_{\gamma} \omega [/mm] = 0 $ mit [mm] $\gamma: [/mm] t [mm] \mapsto [/mm] z(t) = (cos(t),sin(t) ) $ mit $0 [mm] \le [/mm] t [mm] \le 2\pi$ [/mm]

Ich glaube, das  [mm] $\omega [/mm] =  [mm] \begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix} [/mm] = [mm] \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix}$ [/mm]

Die Integrabilitätsbedingungen lauten: [mm] $\frac{\partial \omega_i}{\partial x_j} [/mm] = [mm] \frac{\partial \omega_j}{\partial x_i}$ [/mm]
Die Frage lautet nun: Was ist in dem Fall das [mm] $x_1$ [/mm] und das [mm] $x_2$ [/mm] ?

Es ist unklar, wie [mm] $x_1$ [/mm] und [mm] $x_2$ [/mm] mit $x$ und $y$ zusammenhängen. Kennt sich da jemand aus?

        
Bezug
Integrabilitätsbedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Mo 16.01.2012
Autor: fred97


> Aufgabe zu Kurvenintegralen:
>  [mm]f(x,y) := y^2, g(x,y) := x^2[/mm]
>  [mm]z(t) = (asin(t),b*cos(t)),[/mm]
> [mm]0\le t \le 2\pi[/mm]  
> Man zeige: [mm]\int_{\gamma} \omega = 0[/mm] mit [mm]\gamma: t \mapsto z(t) = (cos(t),sin(t) )[/mm]
> mit [mm]0 \le t \le 2\pi[/mm]
>  Ich glaube, das  [mm]$\omega[/mm] =  
> [mm]\begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}[/mm] = [mm]\begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix}$[/mm]
>  
> Die Integrabilitätsbedingungen lauten: [mm]\frac{\partial \omega_i}{\partial x_j} = \frac{\partial \omega_j}{\partial x_i}[/mm]
>  
> Die Frage lautet nun: Was ist in dem Fall das [mm]x_1[/mm] und das
> [mm]x_2[/mm] ?
>
> Es ist unklar, wie [mm]x_1[/mm] und [mm]x_2[/mm] mit [mm]x[/mm] und [mm]y[/mm] zusammenhängen.
> Kennt sich da jemand aus?  


[mm] x_1=x, ~x_2=y [/mm]

FRED

Bezug
                
Bezug
Integrabilitätsbedingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Mo 16.01.2012
Autor: clemenum

Ich habe vergessen in der letzten Angabe einen wesentlichen Teilauftrag anzugeben: "Anleitung: Überprüfe die Integrabilitätsbedingungen"

Wenn ich in die Integrabilitätsbedingungen einsetze, dann resultiert daraus $ [mm] \frac{\partial }{\partial y}y^2 [/mm] = [mm] \frac{\partial }{\partial x}x^2$ [/mm] und dies ist offensichtlich unrichtig. Wo liegt der Fehler?

Bezug
                        
Bezug
Integrabilitätsbedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Mo 16.01.2012
Autor: Lonpos

Bist du sicher das die Beispiele zusammenhängen?

Allgemein gilt jedoch das die Integrabilitätsbedingung nicht hinreichend sondern lediglich notwendig sind. Es existieren also Funktion die beispielsweise die Bedingung erfüllen, dass Integral aber nicht 0 sein muss.

Offenbar gilt dies auch umgekehrt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]