www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegral. Probl. m. d. Grenzen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Integral. Probl. m. d. Grenzen
Integral. Probl. m. d. Grenzen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral. Probl. m. d. Grenzen: Frage zu den Grenzen
Status: (Frage) beantwortet Status 
Datum: 21:08 So 10.07.2005
Autor: Limschlimm

Hallo Leute.

Habe Verständnisschwierigkeiten bei folgendem Integral:

[mm] \integral_{G}^{} {12x^2y^3 dG} [/mm]

Der Bereich G in der xy-Ebene wird durch folgende Geraden begrenzt:

x = 4 ; y = 1 ; x + 2y = 2

Leider weis ich nicht welche Grenze für was ist! Ich tue mich allgemein schwer mit den Integrationsgrenzen (V.Integrale, F.Integrale etc.)
Hat jemand nen guten Tip wie man diesem Problem mit den Grenzen Herr werden kann??
Es soll übrigens das Volumen dieses Körpers bestimmt werden.

Ergebnis ist: 1664/35

Grüße, LS

        
Bezug
Integral. Probl. m. d. Grenzen: Grenzen
Status: (Antwort) fertig Status 
Datum: 21:27 So 10.07.2005
Autor: MathePower

Hallo Limschlimm,

> Hallo Leute.
>  
> Habe Verständnisschwierigkeiten bei folgendem Integral:
>  
> [mm]\integral_{G}^{} {12x^2y^3 dG}[/mm]
>  
> Der Bereich G in der xy-Ebene wird durch folgende Geraden
> begrenzt:
>  
> x = 4 ; y = 1 ; x + 2y = 2
>
> Leider weis ich nicht welche Grenze für was ist! Ich tue
> mich allgemein schwer mit den Integrationsgrenzen
> (V.Integrale, F.Integrale etc.)

Die Grenzen x=4 und y=1 sind ja explizit vorgegeben.

Löse die 3. Gleichung nach x auf. Und bestimme den Schnitt mit der Gerade x=4. Dann hast Du auch Deine Grenzen für y.

>  Hat jemand nen guten Tip wie man diesem Problem mit den
> Grenzen Herr werden kann??
>  Es soll übrigens das Volumen dieses Körpers bestimmt
> werden.
>  
> Ergebnis ist: 1664/35

Das kommt auch dann heraus.[ok]

>  
> Grüße, LS

Gruß
MathePower

Bezug
                
Bezug
Integral. Probl. m. d. Grenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:48 So 10.07.2005
Autor: Limschlimm

Hi.

Danke für deine Antwort.

Leider bekomm ich nicht das gleiche Ergebnis raus.

Ich hab so gerechnet.

Hab (wie du sagtest) GL 3. nach x aufgelöt und mit x = 4 gleichgesetzt um den Schnittpunkt zu bestimmen. Ich hab dadurch für y = -1 raus.

Das Integral schaut dann folgendermaßen aus:


[mm] \integral_{-1}^{1} [/mm] { [mm] \integral_{0}^{4} {12x^2y^3 dxdy}} [/mm]

Ist es soweit richtig und ich hab mich irgendwo verrechnet oder sind die Grenzen falsch?

Grüße, LS


Bezug
                        
Bezug
Integral. Probl. m. d. Grenzen: Integrationsgrenzen
Status: (Antwort) fertig Status 
Datum: 22:23 So 10.07.2005
Autor: MathePower

Hallo Limschlimm.

>  
> Hab (wie du sagtest) GL 3. nach x aufgelöt und mit x = 4
> gleichgesetzt um den Schnittpunkt zu bestimmen. Ich hab
> dadurch für y = -1 raus.


>  
> Das Integral schaut dann folgendermaßen aus:
>  
>
> [mm]\integral_{-1}^{1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{ [mm]\integral_{0}^{4} {12x^2y^3 dxdy}}[/mm]

Beachte das die Untergrenze vom zweiten Integral eine Funktion x(y) ist.

>  
> Ist es soweit richtig und ich hab mich irgendwo verrechnet
> oder sind die Grenzen falsch?

Fast alle Grenzen sind richtig.

Das Integral muß so aussehen:

[mm] \int\limits_{ - 1}^1 {\;\int\limits_{2\; - \;2y}^4 {12\;x^2 \;y^3 \;dx\;dy} } [/mm]

Gruß
MathePower

>  
> Grüße, LS
>  

Bezug
                                
Bezug
Integral. Probl. m. d. Grenzen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 So 10.07.2005
Autor: Limschlimm

Jetzt hats endlich geklappt! Das Ergebnis passt :)

Vielen Dank nochmal für deine Mühe

Viele Grüße, LS

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]