www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieIntegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Maßtheorie" - Integral
Integral < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 So 09.11.2014
Autor: knowhow

Aufgabe
Sei [mm] \mu [/mm] ein Maß auf X. Für f [mm] \in \mathcal{L}^1(\mu) [/mm] zeige:

für jedes [mm] \epsilon>0 [/mm] ex. ein A [mm] \in \mathcal{A}_{\mu} [/mm] mit [mm] \mu(A)<\infty, [/mm] sodass

[mm] \integral_{\mathcal{A}^C}|f|d\mu <\epsilon [/mm]

kann mir da jemand eine starthilfe geben? Wie kann ich am besten an diese aufgabe herangehen?

muss ich da evtl. eine folge konstruieen sprich z.B [mm] f_n \rightarrow [/mm] f mit [mm] \mu [/mm]
somit habe ich dann [mm] \integral_{\mathcal{A}^C}|f-f_n|d\mu<\bruch{\epsilon}{2} [/mm] und [mm] \integral|f|d\mu{\epsilon}{2} [/mm]

dann kann ich folg. Abschätzung machen
[mm] \integral|f|d\mu\le \integral|f-f_n|+\integral|f|\le\epsilon [/mm]

kann mir da jemand helfen? ich bin für jeden tipp dankbar.

gruß,
knowhow

        
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:35 Mo 10.11.2014
Autor: fred97


> Sei [mm]\mu[/mm] ein Maß auf X. Für f [mm]\in \mathcal{L}^1(\mu)[/mm]
> zeige:
>  
> für jedes [mm]\epsilon>0[/mm] ex. ein A [mm]\in \mathcal{A}_{\mu}[/mm] mit
> [mm]\mu(A)<\infty,[/mm] sodass
>  
> [mm]\integral_{\mathcal{A}^C}|f|d\mu <\epsilon[/mm]
>  kann mir da
> jemand eine starthilfe geben? Wie kann ich am besten an
> diese aufgabe herangehen?
>  
> muss ich da evtl. eine folge konstruieen sprich z.B [mm]f_n \rightarrow[/mm]
> f mit [mm]\mu[/mm]
>  somit habe ich dann
> [mm]\integral_{\mathcal{A}^C}|f-f_n|d\mu<\bruch{\epsilon}{2}[/mm]
> und [mm]\integral|f|d\mu{\epsilon}{2}[/mm]
>  
> dann kann ich folg. Abschätzung machen
>  [mm]\integral|f|d\mu\le \integral|f-f_n|+\integral|f|\le\epsilon[/mm]
>  
> kann mir da jemand helfen? ich bin für jeden tipp
> dankbar.
>  

Was bedeutet denn [mm] \mathcal{A}_{\mu} [/mm] ?

FRED

> gruß,
>  knowhow


Bezug
                
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:18 Mo 10.11.2014
Autor: knowhow

[mm] \mathcal{A}_{\mu} [/mm] ist [mm] \sigma- [/mm] algebra

Bezug
        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 09:28 Mo 10.11.2014
Autor: fred97

Tipp: Tschebyscheff- Ungleichung

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]