www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Integral
Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Beispiel
Status: (Frage) beantwortet Status 
Datum: 16:03 Do 18.11.2004
Autor: Bastiane

Hallo!
Beim Nacharbeiten der Vorlesungsmitschrift stoße ich auf folgendes Beispiel:
[mm] f_n(x)= e^{n-x}, [/mm] x>n
         = 0, x [mm] \le [/mm] n

Nun soll angeblich
[mm] \integral_{-\infty}^{\infty} {f_n(x) dx}=1 [/mm] sein.
Aber irgendwie sehe ich das nicht.

Ich habe es mal so versucht:
[mm] \integral_{-\infty}^{\infty} {f_n(x) dx}=[-e^{n-x}]^{\infty}_{-\infty} [/mm] aber irgendwie komme ich da nicht wirklich weiter. Hab' ich irgendwas Einfaches übersehen?

Viele Grüße
Bastiane
[cap]


        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Do 18.11.2004
Autor: Marc

Hallo Bastiane!

> Hallo!
>  Beim Nacharbeiten der Vorlesungsmitschrift stoße ich auf

Sehr vorbildlich!

> folgendes Beispiel:
>  [mm]f_n(x)= e^{n-x},[/mm] x>n
>           = 0, x [mm]\le[/mm] n
>  
> Nun soll angeblich
> [mm]\integral_{-\infty}^{\infty} {f_n(x) dx}=1[/mm] sein.
>  Aber irgendwie sehe ich das nicht.
>  
> Ich habe es mal so versucht:
>   [mm]\integral_{-\infty}^{\infty} {f_n(x) dx}=[-e^{n-x}]^{\infty}_{-\infty}[/mm]
> aber irgendwie komme ich da nicht wirklich weiter. Hab' ich
> irgendwas Einfaches übersehen?

Vielleicht die abschnittsweise Definition von [mm] $f_n$: [/mm]

[mm] $\integral_{-\infty}^{\infty} {f_n(x) dx}$ [/mm]
[mm] $=\integral_{-\infty}^{n} {f_n(x) dx}+\integral_{n}^{\infty} {f_n(x) dx}$ [/mm] MBIntervalladditivität
[mm] $=\integral_{-\infty}^{n} [/mm] {0 [mm] dx}+\integral_{n}^{\infty} {e^{n-x}dx}$ [/mm]
[mm] $=\integral_{-\infty}^{n} [/mm] {0 [mm] dx}+\limes_{m\to\infty} \integral_{n}^{m} {e^{n-x}dx}$ [/mm]
[mm] $=0+\limes_{m\to\infty} \left\lbrack -e^{n-x}\right\rbrack_n^m$ [/mm]
[mm] $=\limes_{m\to\infty} \left\lbrack -e^{n-m}+e^{0}\right\rbrack$ [/mm]
[mm] $=\limes_{m\to\infty} \left\lbrack \underbrace{-e^{n-m}}_{{\downarrow \atop 0}}+1\right\rbrack$ [/mm]
$=1$

Viele Grüße,
Marc




Bezug
                
Bezug
Integral: Danke.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:09 Do 18.11.2004
Autor: Bastiane

Hallo Marc!
Danke für deine ausführliche Antwort. War doch etwas länger als ich gedacht hatte, aber genauso einfach, wie ich erwartet hatte.

Viele Grüße
Christiane
[breakdance]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]