www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Integral
Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Frage
Status: (Frage) beantwortet Status 
Datum: 16:44 Di 30.11.2004
Autor: ratz

Hallo,

ich möchte folgendes Integral lösen:


$ [mm] R(\phi) [/mm] = [mm] e^{\int_{\phi_0}^{\phi} (\tan [0.5*(\phi-c*(phi-phi_0)+\asin 4/R(\phi))] )\, d\phi }$ [/mm]


ich vermute mal das dies nicht elementar lösbar ist, weil das R auch von $ [mm] \phi [/mm] $ abhängt, richtig?!?

Außerdem ist c eine konstante, die ich eingentlich ausrechnen möchte.
Ich hab noch einen Punkt gegeben, allerdings in kartesischen koordinaten:

$ x = 27.5 $

$y = 16.8  $

meine Idee war es nun das Integral auszurechnen und dann den Punkt einsetzten und nach c auflösen. Das müsste doch soweit funktionieren. ?

allerdings kann ich jetzt das Integral ja nicht lösen!
Hat jemand eine Idee wie man das Integral eventuell, näherungsweise lösen kann ?
denn ich hab keine ahnung wie ich sonst auf die Konstante c kommen soll.

lg ratz


        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Di 07.12.2004
Autor: Julius

Hallo ratz!

Hier geht einiges durcheinander. ;-)

Ich vermute mal, dass das [mm] $\Phi$ [/mm] bei dem $R$ und das [mm] $\Phi$ [/mm] der oberen Integralgrenze das Gleiche ist, während es sich bei der Integrationsvariable eigentlich um ein [mm] $\Phi'$ [/mm] handelt. Ansonsten würde das alles keinen Sinn machen. Du kannst das Integral also doch lösen. setze dann [mm] $\Phi$ [/mm] als obere Integralgrenze ein und löse nach $c$ auf.

Viele Grüße
Julius

Bezug
                
Bezug
Integral: Korrektur
Status: (Frage) beantwortet Status 
Datum: 09:25 Mi 08.12.2004
Autor: ratz

Hallo Julius,

also eigentlich mein ich

$ [mm] R(\phi) [/mm] = [mm] e^{\int_{\phi_0}^{\phi} (\tan [0.5\cdot{}(\phi-c\cdot{}(\phi-\phi_0)+\asin 4/R(\phi))] )\, d\phi } [/mm] $


wobei [mm] $\phi_0 [/mm] $ irgendeine Konstante ist
irgendwie bin ich unfähig die Formeln richtig anzugeben.
Dieses Integral läßt sich aber nicht mehr so einfach lösen ?!
zuminderst hab ich immer noch keine lösung

lg steffi

Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 11:17 Mi 08.12.2004
Autor: Julius

Hallo Steffi!

Okay, ich sehe das Problem. Nein, das lässt sich nicht so einfach lösen, es ist ja eine Integralgleichung. Nähere am besten (falls [mm] $\Phi \approx \Phi_0$ [/mm] gilt) das Integral

[mm] $\int\limits_{\Phi_0}^{\Phi} \tan[0.5 \cdot (\Phi' [/mm] - [mm] c\cdot (\Phi' [/mm] - [mm] \Phi_0) [/mm] + [mm] 4/R(\Phi'))]d\Phi'$ [/mm]

nach dem Miitelwertsatz durch

[mm] $(\Phi-\Phi_0) \cdot \tan[0.5 \cdot (\Phi [/mm] - [mm] c\cdot (\Phi [/mm] - [mm] \Phi_0) [/mm] + [mm] 4/R(\Phi))]$ [/mm]

an, eine bessere Idee habe ich jetzt nicht.

Viele Grüße
Julius



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]