www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenIntegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Integral
Integral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Integrieren
Status: (Frage) beantwortet Status 
Datum: 11:30 Sa 08.01.2005
Autor: Christin_01

Guten Morgen,

ich habe ein kleines Problem mit folgendem Integral:

[mm] \integral_{0}^{1} [/mm] f(x,y) dx

mit

[mm] f(x,y):=\begin{cases} \bruch{x^2-y^2}{(x^2+y^2)^2}, & \mbox{falls}~ x,y \not= (0,0) \\ 0, & \mbox{falls} ~x,y = (0,0) \end{cases} [/mm]

Es wäre nett, wenn mir einer nur sagen könnte welche Regel ich anweden soll, dann probiere ich mit der weiter, weil bis jetzt hat mich keine zum Ziel geführt.

Schon mal Danke.

Viele Grüße
Christin



        
Bezug
Integral: tipp
Status: (Antwort) fertig Status 
Datum: 13:50 Sa 08.01.2005
Autor: andreas

hi

nur ein kleiner tipp:

berechne mal [m] \frac{\textrm{d}}{\textrm{d}x} \left( \frac{-x}{x^2+y^2} \right) [/m]

grüße
andreas

Bezug
                
Bezug
Integral: Frage zum Tipp
Status: (Frage) beantwortet Status 
Datum: 14:44 Sa 08.01.2005
Autor: Christin_01

Hi Andreas,

danke!

Ich habe jetzt mal aber eine allgemeine Frage, wie sieht man sowas? Ist es Übung und hattest du auch etwas rumprobiert? Ich hatte echt alles probiert, Partielle Integration, Partiallbruchzerlegung, usw...
und kam nicht zum Ziel...

VG
Christin

Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 So 09.01.2005
Autor: andreas

hi

ehrlich gesagt habe ich das nicht gerechnet, sondern gewusst, da ich auch schonmal das selbe problem hatte (es geht wohl darum zu zeigen, dass man fubini nicht auf alles und jeden anweden kann ...?).

wenn man das berechnen will, würde ich ganz stark auf partialbruchzerlegung tippen, habe es aber nicht zu ende gerechnet:

[m] \frac{x^2-y^2}{(x^2 + y^2)^2} = \frac{1}{x^2 + y^2} - \frac{2y^2}{(x^2 + y^2)^2} [/m]

kannst du ja gerne mal probieren, wenn du keine vom himmel gefallenen ergebnisse abgeben willst :-).


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]