www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Integral
Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Sa 19.01.2008
Autor: Zerwas

Aufgabe
Berechnen Sie das folgende Integral:
[mm] \integral_0^1\burch{3t+5}{1+(t+1)^2}dt [/mm]

Hätte hier vllt jmd einen Ansatz für mich?

So "direkt" finde ich keine Stammfkt. und bei Partiellem Integrieren finde ich keine adequate Zerlegung.

Gruß Zerwas

        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Sa 19.01.2008
Autor: Somebody


> Berechnen Sie das folgende Integral:
>  [mm]\integral_0^1\bruch{3t+5}{1+(t+1)^2}dt[/mm]
>  Hätte hier vllt jmd einen Ansatz für mich?

Es ist ja [mm] $3t+5=\frac{3}{2}\cdot [/mm] 2(t+1)+2$, also

[mm]\integral_0^1\bruch{3t+5}{1+(t+1)^2}dt=\tfrac{3}{2}\integral_0^1 \frac{2(t+1)}{1+(t+1)^2}\; dt+2\integral_0^1 \frac{1}{1+(t+1)^2}\;dt[/mm]

und dann Substitution: beim ersten Integral $u(t) := [mm] (t+1)^2$ [/mm] und beim zweiten $u(t):=t+1$.

Bezug
                
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Sa 19.01.2008
Autor: Zerwas

Die Zerlegung des Integrals
$ [mm] \integral_0^1\bruch{3t+5}{1+(t+1)^2}dt=\tfrac{3}{2}\integral_0^1 \frac{2(t+1)}{1+(t+1)^2}\; dt+2\integral_0^1 \frac{1}{1+(t+1)^2}\;dt [/mm] $
ist klar. Jedoch nicht wie man auf diese Zerlegung kommt.

Und was substituiere ich dann wie?
allgemein ja indem ich [mm] \integral_a^b f(\phi(t))*\phi'(t)\;dt [/mm] in [mm] \integral_{\phi(a)}^{\phi(b)} f(x)\;dx [/mm] umforme

Das hieße dann also:
[mm] \tfrac{3}{2}\integral_0^1 \frac{2(t+1)}{1+(t+1)^2}\; dt+2\integral_0^1 \frac{1}{1+(t+1)^2}\;dt= \bruch{3}{2}\integral_{(0+1)^2=1}^{(1+1)^2=4}{\bruch{1}{1+x} dx} [/mm] + [mm] 2*\integral_{(0+1)=1}^{(1+1)=2}{\bruch{1}{1+x^2} dx} [/mm]
= [mm] \buch{3}{2}*[ln(x+1)]_1^4+2*[arctan (x)]_1^2 [/mm]
= [mm] \bruch{3}{2} [/mm] *(ln 5 - ln 2) +2*(arctan 2 - arctan(1))
[mm] \approx [/mm] 2,017936098

Passt das so?

Und vielen Dank :-)

Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Sa 19.01.2008
Autor: Somebody


> Die Zerlegung des Integrals
>  
> [mm]\integral_0^1\bruch{3t+5}{1+(t+1)^2}dt=\tfrac{3}{2}\integral_0^1 \frac{2(t+1)}{1+(t+1)^2}\; dt+2\integral_0^1 \frac{1}{1+(t+1)^2}\;dt[/mm]
>  
> ist klar. Jedoch nicht wie man auf diese Zerlegung kommt.
>  
> Und was substituiere ich dann wie?
> allgemein ja indem ich [mm]\integral_a^b f(\phi(t))*\phi'(t)\;dt[/mm]
> in [mm]\integral_{\phi(a)}^{\phi(b)} f(x)\;dx[/mm] umforme

Ja, eben: Du siehst also [mm] $(t+1)^2$ [/mm] im Nenner des gegebenen Integrals und ein gewisses Vielfaches von $t$ im Zähler. Wollte man also etwa [mm] $\phi(t)=(t+1)^2$ [/mm] nehmen, dann wäre also [mm] $\phi'(t)=2(t+1)$. [/mm] Damit hat man ein Ziel für die Umformung des Zählers. Und die Konstante im Zähler, die man dann in $2(t+1)$ nicht unterbringen kann, verschiebt man einfach (mit dem Nenner) in ein anderes Integral. Dass sich dort eine lineare Substitution [mm] $\phi(t)=t+1$ [/mm] anbietet, ist klar.

>  
> Das hieße dann also:
>  [mm]\tfrac{3}{2}\integral_0^1 \frac{2(t+1)}{1+(t+1)^2}\; dt+2\integral_0^1 \frac{1}{1+(t+1)^2}\;dt= \bruch{3}{2}\integral_{(0+1)^2=1}^{(1+1)^2=4}{\bruch{1}{1+x} dx}[/mm]
> + [mm]2*\integral_{(0+1)=1}^{(1+1)=2}{\bruch{1}{1+x^2} dx}[/mm]
>  =
> [mm]\buch{3}{2}*[ln(x+1)]_1^4+2*[arctan (x)]_1^2[/mm]
>  =
> [mm]\bruch{3}{2}[/mm] *(ln 5 - ln 2) +2*(arctan 2 - arctan(1))
>  [mm]\approx[/mm] 2,017936098
>  
> Passt das so?

[ok]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]