www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Integral
Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:19 Mo 17.01.2005
Autor: ruhtra

Hi

bin neu hier
Habe in 4 Wochen Prüfung , und tue alte Aufgaben durchrechnen ,
da habe ich mal hier die Aufgabe , und weiss nicht wie ich sie angehen soll?
Könnte mir einer mal HELFEN !!!

[mm] \integral_{0}^{ \infty} [/mm] {(e^(-px)*cosx) dx}
für p>0

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 Mo 17.01.2005
Autor: Hanno

Hallo ruhtra!

> bin neu hier
> Habe in 4 Wochen Prüfung , und tue alte Aufgaben durchrechnen ,
> da habe ich mal hier die Aufgabe , und weiss nicht wie ich sie angehen soll?
> Könnte mir einer mal HELFEN !!!

[willkommenmr]

Und viel Erfolg jetzt schonmal für deine Prüfung!

Und nun zur Aufgabe:
Am besten löst du sie erstmal ohne Integrationsgrenzen. Letztere kannst du nämlich auch bequem zum Schluss einsetzen. Du löst das Integral am besten über zweifache partielle Integration. Nach der ersten partiellen Integration bleibt das Integral [mm] $\int sin(x)\cdot e^{-px}$ [/mm] übrig, nach der zweiten findest du [mm] $\int cos(x)\cdot e^{-px}$ [/mm] wieder. Dann ziehst du das entstandene Integral (mitsamt seines Koeffizienten) auf die linke Seite, klammerst [mm] $\int cos(x)\cdot e^{-px}$ [/mm] aus und kannst per Division bequem nach [mm] $\int cos(x)\cdot e^{-px}$ [/mm] umstellen.
Danach setzt du die Integrationsgrenzen ein. Beim Grenzübergang gegen unendlich sollte der Term Null werden, setzt du allerdings danach die Untergrenze $x=0$ ein, so erhältst du ein Ergebnis in Abhängigkeit von $p$.

Versuch's bitte mal, wenn du partout nicht weiter kommst, werden wir dir weiter helfen.

Liebe Grüße,
Hanno

Bezug
                
Bezug
Integral: antwort
Status: (Frage) beantwortet Status 
Datum: 16:57 Mo 17.01.2005
Autor: ruhtra

Wäre der erste Teil so

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 04:04 Sa 05.02.2005
Autor: Stefan

Hallo!

Ja, das ist richtig. Du erhältst also:

[mm] $\int e^{-px}\cos(x)\, [/mm] dx = [mm] \sin(x) \cdot e^{-px} [/mm] + [mm] \p [/mm] int [mm] e^{-px}\sin(x)\, [/mm] dx$.

Und jetzt, wie von Hanno angedeutet, halt noch einmal partiell integrieren. Dann kommst du auf:

[mm] $\int e^{-px} \cos(x)\, [/mm] dx =  [mm] \sin(x) \cdot e^{-px} -pe^{-px} \cos(x) [/mm] - [mm] p^2 \int e^{-px} \cos(x)\, [/mm] dx$,

also:

[mm] $\int e^{-px} \cos(x)\, [/mm] dx = [mm] \frac{1}{1+p^2} e^{-px} (\sin(x) [/mm] - [mm] p\cos(x))$. [/mm]

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]