www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisIntegral -- Aufleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Integral -- Aufleitung
Integral -- Aufleitung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral -- Aufleitung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:02 Do 17.02.2005
Autor: webdesigner

Hallo,

wir werden in ca. 10 Stunden ne wichtige Klassenarbeit schreiben und ich habe erst jetzt ein Problem erkannt...

wenn ich f(x) die Stammfunktion also F(x) bestimmen will, muss ich f(x) ja Aufleiten. d.h. F'(x)=f(x)!

Bei der Ableitung verschwindet die Konstante (?) ja bekanntlich, die frage ist wie bekomme ich dann bei der Aufleitung die Konstante wieder???

Beispiel Aufgabe:

Die erste Ableitung einer Funktion lässt sich durch den Term - [mm] \bruch{4}{3} x^{3}+\bruch{1}{3} x^{2}+4 [/mm] beschreiben. Das Schaubild der zugehörigen Funktion verläuft durch den Punkt P(3/-7). Bestimmen Sie den Funktionsterm.


Ich habe mich hier im Forum einbisschen umgeschaut hab auch hier im Lexikon nachgeschaut und verlange eins:  Schreibt bitte so, dass selbst ich es verstehe. Lasst doch einfach mal die ganzen begriffe weg und erklärt einmal Umgangssprachlich, wie um alles in der Welt ich die Konstante bestimme.... Mehr will ich doch garnicht!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral -- Aufleitung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:22 Fr 18.02.2005
Autor: Johannes_Nbg


>  Das Schaubild der zugehörigen Funktion verläuft durch
>  den Punkt P(3/-7)

Genau hier liegt auch der Schlüssel zur Lösung, um die Konstante c (oder auch e, wie Du sie genannt hast) zu bestimmen:

Du setzt in die Stammfunktion

[mm] F: y = -\bruch{x^4 }{3} + \bruch{x^3 }{9} + 4x + c [/mm]

einfach für x bzw. y 3 bzw. -7 ein. Dann kannst Du das Ganze ganz leicht nach c auflösen. Bei der fertigen Funktion setzt Du diesen Wert dann einfach statt c in die oben genannte Stammfunkton ein.

Ich hoffe, ich konnte Dir helfen.

Viele Grüße
Johannes

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]