www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegral - Wurzel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Integral - Wurzel
Integral - Wurzel < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral - Wurzel: Integralrechnung Problem
Status: (Frage) beantwortet Status 
Datum: 14:27 Do 28.05.2009
Autor: andi7987

Aufgabe
[mm] \integral{\wurzel{3-x} dx} [/mm]

Ich habe folgendes Problem!

Ich weiss, dass ich die Form einmal auf [mm] (3-x)^{\bruch{1}{2}} [/mm] bringen muss!

Dann habe ich ja den Stammintegral mit:

[mm] \bruch{x^{n+1}}{n+1} [/mm] + c

Was mir aber nicht klar ist.

Die Lösung lautet dann [mm] -\bruch{2}{3} *(3-x)^{\bruch{3}{2}} [/mm]

Wieso minus?? Auf was muss ich noch achten?

        
Bezug
Integral - Wurzel: Minus in der Wurzel
Status: (Antwort) fertig Status 
Datum: 14:32 Do 28.05.2009
Autor: Roadrunner

Hallo Andi!


> Dann habe ich ja den Stammintegral mit: [mm]\bruch{x^{2.5}}{n+1}[/mm] + c
>  
> Was mir aber nicht klar ist.

Es wird die MBPotenzregel angewandt.

  

> Die Lösung lautet dann [mm]-\bruch{2}{3} *(3-x)x^{\bruch{1}{2}}[/mm]

Das soll doch bestimmt [mm] $-\bruch{2}{3}*(3-x)^{\bruch{\red{3}}{2}}+c$ [/mm] heißen, oder?


> Wieso minus?? Auf was muss ich noch achten?

Du musst beachten, dass unter der Wurzel $... \ [mm] \red{-} [/mm] \ x$ steht. Formal sauber musst Du hier eine Substitution mit $u \ := \ 3-x$ durchführen.


Gruß vom
Roadrunner


Bezug
                
Bezug
Integral - Wurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Do 28.05.2009
Autor: andi7987

Ich habe jetzt die Aufgabe ausgebessert! Mir ist das auch gleich aufgefallen! Aber danke auch von dir?

Warum muss ich hier dann differenzieren, wo ich doch beim integrieren bin und hier eigentlich das Gegenteil von Differenzieren mache?

Bitte erklär mir das genau!

Bezug
                        
Bezug
Integral - Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Do 28.05.2009
Autor: Marcel

Hallo,

> Ich habe jetzt die Aufgabe ausgebessert! Mir ist das auch
> gleich aufgefallen! Aber danke auch von dir?
>  
> Warum muss ich hier dann differenzieren, wo ich doch beim
> integrieren bin und hier eigentlich das Gegenteil von
> Differenzieren mache?
>  
> Bitte erklär mir das genau!  

[mm] $$\int \sqrt{3-x}\;dx$$ [/mm]
ist gesucht. Substituierst Du [mm] $u=u(x):=\,3-x\,,$ [/mm] so ist [mm] $du=-dx\,$ [/mm] und damit
[mm] $$\int \sqrt{\underbrace{3-x}_{=u}}\;\underbrace{dx}_{=-du}=\int \sqrt{u}\;*(-1)\;du=-\int u^{1/2}\;du=\,-\;\frac{2}{3}u^{3/2}+\text{const}\underset{u=3-x}{=}\,-\;\frac{2}{3}(3-x)^{3/2}+\text{const}\,.$$ [/mm]

Die Konstante (bzw. konstante Funktion) [mm] $\text{const}$ [/mm] kannst Du dabei auch vernachlässigen, wenn ihr Stammfunktionen eigentlich als gewisse Funktionenklasse definiert haben solltet. (Ansonsten kann man sie auch vernachlässigen, wenn man nur eine Stammfunktion angeben will.)

Wenn Du das nicht auf direktem Wege rechnen willst:
Die Funktion [mm] $F(x):=\frac{2}{3}(3-x)^{3/2}$ [/mm] hat, nach der Kettenregel (es ist $F=u [mm] \circ v\,,$ [/mm] d.h. $F(x)=u(v(x))$ mit [mm] $u(x)=\frac{2}{3}x^{3/2}$ [/mm] und [mm] $v(x)=3-x\,$), [/mm] die Ableitung
[mm] $$F'(x)=u'(v(x))*v'(x)\,,$$ [/mm]
wobei [mm] $u'(\green{x})=x^{1/2}=\sqrt{\green{x}}$ [/mm] und daher [mm] $u'(\green{v(x)})=\sqrt{\green{v(x)}}=\sqrt{\green{3-x}}$ [/mm] ist, und [mm] $v'(x)=-1\,,$ [/mm]
also
[mm] $$F'(x)=\underbrace{\sqrt{3-x}}_{=u'(v(x))}*(\underbrace{-1}_{=v'(x)})=-\sqrt{3-x}\,.$$ [/mm]

Damit ist [mm] $F(x)=\frac{2}{3}(3-x)^{3/2}$ [/mm] eine Stammfunktion von $x [mm] \mapsto -\sqrt{3-x}\,,$ [/mm] woraus folgt, dass [mm] $-F(x)=-\frac{2}{3}(3-x)^{3/2}$ [/mm] eine Stammfunktion von $x [mm] \mapsto -(-\sqrt{3-x})=\sqrt{3-x}$ [/mm] ist.

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]