www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationIntegral berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - Integral berechnen
Integral berechnen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral berechnen: Kontrolle
Status: (Frage) beantwortet Status 
Datum: 17:24 Sa 20.01.2007
Autor: Fuffi

Aufgabe
Berechnen sie die Ableitung der Funktion f: x [mm] \mapsto \integral_{1}^{x}{\bruch{x}{1+t^{2}}dt} [/mm]

Ich würde gerne wissen ob mein Ergebniss korrekt ist. Ich habe als Ergebniss:
[mm] \bruch{x}{1+x^{2}} [/mm] - [mm] \bruch{x}{2} [/mm]

Ich habe als erstes die Stammfunktion gebildet, die Grenzen eingesetzt und dann abgeleitet. Sollte das Ergebniss falsch sein wäre ich dankbar über einen Tip wie ich die Aufgabe lösen köännte. Danke im voraus.
Fuffi

Ich habe diese Frage in keinem anderen Forum und auf keinen anderen Internetseiten gestellt.


        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Sa 20.01.2007
Autor: Leopold_Gast

Das Ergebnis stimmt nicht. Du kannst das [mm]x[/mm] vor das Integral ziehen (die Integration geht ja über [mm]t[/mm]). Du hast dann die Darstellung

[mm]f(x) = u(x) \cdot v(x) \ \ \text{mit} \ \ u(x) = x \, , \, v(x) = \int_1^x~\frac{\mathrm{d}t}{1+t^2}[/mm]

Das heißt: Produktregel.

Bezug
                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 Sa 20.01.2007
Autor: Fuffi

Danke für die schnelle Antwort. Das heißt ja ich habe

[mm] f(x)=x*\integral_{1}^{x}{\bruch{1}{1+t^{2}}dt} [/mm]

und

[mm] \integral_{1}^{x}{\bruch{1}{1+t^{2}}dt} [/mm] = arcsin(x)-arcsin(1)

also

f(x)=x(arcsin(x)-arcsin(1)) und muss das jetzt nur noch ableiten

Oder habe ich mich irgendwo verrechnet?

Bezug
                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Sa 20.01.2007
Autor: ullim

Hi,

> Danke für die schnelle Antwort. Das heißt ja ich habe
>
> [mm]f(x)=x*\integral_{1}^{x}{\bruch{1}{1+t^{2}}dt}[/mm]
>  
> und
>
> [mm]\integral_{1}^{x}{\bruch{1}{1+t^{2}}dt}[/mm] =
> arcsin(x)-arcsin(1)

Das ist nicht richtig

[mm] \integral_{1}^{x}{\bruch{1}{1+t^{2}}dt}=arctan(x)-arctan(1) [/mm]

[mm] \br{d}{dx}f(x)=\br{d}{dx}x*\integral_{1}^{x}{\bruch{1}{1+t^{2}}dt}+x*\br{d}{dx}\integral_{1}^{x}{\bruch{1}{1+t^{2}}dt} [/mm] also

[mm] \br{d}{dx}f(x)=arctan(x)-arctan(1)+\bruch{x}{1+x^{2}} [/mm]  wegen [mm] arctan(1)=\br{\pi}{4} [/mm] gilt

[mm] \br{d}{dx}f(x)=arctan(x)-\br{\pi}{4}+\bruch{x}{1+x^{2}} [/mm]

> also
>
> f(x)=x(arcsin(x)-arcsin(1)) und muss das jetzt nur noch
> ableiten
>  
> Oder habe ich mich irgendwo verrechnet?

S. oben

mfg ullim

Bezug
                                
Bezug
Integral berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 Sa 20.01.2007
Autor: Fuffi

Alles klar danke. Das mit dem acrsin und arctan ist mit gerade auch aufgefallen das ich da was vertauscht habe. Aber du warst schneller als ich

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]