www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegral berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Integral berechnen
Integral berechnen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral berechnen: Integral
Status: (Frage) beantwortet Status 
Datum: 17:13 Mo 25.02.2008
Autor: Binky

Aufgabe
[mm] \integral_{}^{}{\bruch{1}{(x-1)^2} dx} [/mm]

[mm] \integral_{}^{}{\bruch{1}{(x-1)^2} dx} [/mm]

Wie komme ich hier weiter?
Mit Substitution von [mm] u=(x-1)^2 [/mm] komme ich nicht auf das geforderte Ergebnis von [mm] \bruch{-1}{x-1} [/mm]

Vielen Dank schon mal für jegliche Anregungen.

Gruß
Binky

        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 Mo 25.02.2008
Autor: Kroni

Hi,

das Integral kannst du durch "hinsehen" lösen, wenndu weist, dass [mm] $\frac{1}{x}$ [/mm] abgeleitet [mm] $-\frac{1}{x^2}$ [/mm] ist. Dann guckst du dir die Klammer an, und siehst, dass die innere Ableitung gleich 1 ist. Das "-" kommt daher, weil du ja beim Ableiten von 1/x das Minus da mit hinbekommst.

LG

Kroniu

Bezug
                
Bezug
Integral berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 25.02.2008
Autor: Binky

Danke. Hast recht.

Bezug
        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Mo 25.02.2008
Autor: Tyskie84

Hallo!

Mit der Substitution kommst du aber auch ans ziel.

[mm] \integral_{a}^{b}{\bruch{1}{(x-1)²} dx} [/mm] u=x-1 [mm] \gdw \bruch{du}{dx}=1 \gdw dx=\bruch{du}{1} [/mm]
[mm] \Rightarrow \integral_{u(a)}^{u(b)}{\bruch{1}{u²} \bruch{du}{1}}=\integral_{u(a)}^{u(b)}{\bruch{1}{u²} du}=\integral_{u(a)}^{u(b)}{u^{-2} du}=-u^{-1}=-(x-1)^{-1}=-\bruch{1}{x-1} [/mm]

[cap] Gruß

Bezug
                
Bezug
Integral berechnen: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 17:31 Mo 25.02.2008
Autor: Kroni

Hi,

> Hallo!
>  
> Mit der Substitution kommst du aber auch ans ziel.
>  
> [mm]\integral_{a}^{b}{\bruch{1}{(x-1)²} dx}[/mm] u=x-1 [mm]\gdw \bruch{du}{dx}=1 \gdw dx=\bruch{du}{1}[/mm]
>  
> [mm]\Rightarrow \integral_{a}^{b}{\bruch{1}{u²} \bruch{du}{1}}=\integral_{a}^{b}{\bruch{1}{u²} du}=\integral_{a}^{b}{u^{-2} du}=-u^{-1}=-(x-1)^{-1}=-\bruch{1}{x-1}[/mm]

Diese Schreibweise gefällt mir nicht. Wenn du Grenzen mit angibst, und substituierst, dann musst du die Grenzen auch entsprechend substituieren. Dann müssen die Grenzen doch u(a) und u(b) heißen.
Hinterher kannst du dann wieder die Rückstubstitutin machen, und wieder die Grenzen a und b hinschreiben...
Ist zwar in deinem Fall egal, weil du wieder rücksubstituierst, und dann wieder a und b einsetzt. Aber das kann man sich bei bestimmten Integralen sparen und dann direkt u(a) und u(b) einstezen.

Liebe Grüße,

Kroni

>  
> [cap] Gruß


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]