www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegral eines Bruchs
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Integral eines Bruchs
Integral eines Bruchs < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral eines Bruchs: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Do 04.06.2009
Autor: Einheit21

Aufgabe
[mm] \integral_{a}^{b}{f(x) dx}(x+1)/(x^3+x^2+x) [/mm]

Dieses Integral kam bei uns auf der Uni mal zu nem Test, wollt es jetzt übungsweise Durchrechnen steh aber immer wieder an, habs versucht indem ich den bruch als ^-1 rauf schreib und mit nenner substituieren, hat aber alles irgendwie nicht geklappt, hoffe ihr könnt mir weiterhelfen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

mfg
Einheit21

        
Bezug
Integral eines Bruchs: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Do 04.06.2009
Autor: fred97

Tipp: Partialbruchzerlegung

FRED

Bezug
                
Bezug
Integral eines Bruchs: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Do 04.06.2009
Autor: Einheit21

hab ich auch schon versucht, aber entweder hab ich die Formel zur Partialbruchzerlegung doch nicht verstanden oder ich hab irgend was anderes Falsch gemacht, es hat jedenfalls nicht funktioniert...

Bezug
                        
Bezug
Integral eines Bruchs: was hast Du gerechnet?
Status: (Antwort) fertig Status 
Datum: 19:37 Do 04.06.2009
Autor: Loddar

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Einheit21!


Um Dir vernünftig helfen zu können, musst Du uns schon verraten, was Du bisher gemacht und gerechnet hast.


Es gilt:
$$\bruch{x+1}{x^3+x^2+x} \ = \ \bruch{x+1}{x*\left(x^2+x+1\right)} \ = \ \bruch{A}{x}+\bruch{B*x+C}{x^2+x+1$$

Gruß
Loddar


Bezug
                                
Bezug
Integral eines Bruchs: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:48 Do 04.06.2009
Autor: Einheit21

das Problem ist das meine bisherigen ansätze im Müll liegen weil nie was bei rausgekommen ist, aber ich erinner mich die partialbruchzerlegung anders gemacht zu haben, werds nochmal versuchen...

Bezug
                                
Bezug
Integral eines Bruchs: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 Do 04.06.2009
Autor: Einheit21

ok... dann hab ich mal folgendes:

ich hab jetz also A/x + (Bx+C)/(x²+x+1)
jetz muss ich ja A B und C finden, meines wissens mit Koeffizientenvergleich, sprich ich setz das mit der ursprünglichen Gleichung Gleich:

A/x + (Bx+C)/(x²+x+1) = (x+1)/(x³+x²+x)|*(x³+x²+x)
Ax² +Ax +A +Bx² +Cx =(x+1)
Beim Koeffizientenvergleich kommt mir A=1, B=0, C=-1 raus

folglich heißt meine neue Gleichung: 1/x - 1/(x²+x+1)
das muss ich jetzt integrieren 1/x ist integriert meines wissens lnx und da ich den weiten Teil ja als x^-2 + x^-1 +1^-1 schreiben könnte, bekomm ich als Gesamtergebniss: lnx - (-1/x +lnx +x)+C oder 1/x -x + C was aber definitiv nicht stimmen kann, da mir 1. der TR was anderes ausspuckt und ich auch so seh das das differenziert nicht meine Stammfunktion ergiebt...

Bezug
                                        
Bezug
Integral eines Bruchs: Korrektur
Status: (Antwort) fertig Status 
Datum: 20:31 Do 04.06.2009
Autor: Loddar

Hallo Einheit!



> A/x + (Bx+C)/(x²+x+1) = (x+1)/(x³+x²+x)|*(x³+x²+x)
> Ax² +Ax +A +Bx² +Cx =(x+1)

[ok]


> Beim Koeffizientenvergleich kommt mir A=1, B=0, C=-1 raus

[notok] Ich erhalte: $A \ = \ B \ = \ 1$  sowie  $C \ = \ 0$ .


Gruß
Loddar


Bezug
                                                
Bezug
Integral eines Bruchs: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:37 Do 04.06.2009
Autor: Steffi21

Hallo Loddar, B=-1, Steffi

Bezug
                                                
Bezug
Integral eines Bruchs: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Do 04.06.2009
Autor: Einheit21

wenn

Ax² +Ax +A +Bx² +Cx =(x+1)(+0x²)

stimmt, kann A=B=1 C=0 nicht stimmen, hier mal der Koeffizientenvergleich langsam:

A+B=0 (vergleich der koeffizienten von x²)
A+C=1 (vergleich der Koeffizeinten von [mm] x^1) [/mm]
A = 1 (vergleich der Koeffizienten von [mm] x^0) [/mm]

ok, leicht ersichtlich, A=1 aber B=-1 da 1+B=0 sein muss, C wiederum ist 0, richtig, da hatte ich mich geirrt...
würde die weitere Vorgehensweise meinerseits passen wenn ich die richtigen koeffizienten verwende oder muss man das dann anders integrieren??

ok, hat steffi schon korrigiert...
dann hab ich also 1/x + (-1*x) / (x²+x+1)
1/x is integriert immernoch lnx, aber jetz hab ich trotz Partialsummenzerlegung beim letzten Term immernoch x im Zähler und im Nenner...

Bezug
                                                        
Bezug
Integral eines Bruchs: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Do 04.06.2009
Autor: schachuzipus

Hallo Einheit21,

> wenn
>  
> Ax² +Ax +A +Bx² +Cx =(x+1)(+0x²)
>  
> stimmt, kann A=B=1 C=0 nicht stimmen, hier mal der
> Koeffizientenvergleich langsam:
>  
> A+B=0 (vergleich der koeffizienten von x²)
>  A+C=1 (vergleich der Koeffizeinten von [mm]x^1)[/mm]
>  A = 1 (vergleich der Koeffizienten von [mm]x^0)[/mm]
>  
> ok, leicht ersichtlich, A=1 aber B=-1 da 1+B=0 sein muss, C
> wiederum ist 0, richtig, da hatte ich mich geirrt...
>  würde die weitere Vorgehensweise meinerseits passen wenn
> ich die richtigen koeffizienten verwende oder muss man das
> dann anders integrieren??
>  
> ok, hat steffi schon korrigiert...
>  dann hab ich also 1/x + (-1*x) / (x²+x+1)
>  1/x is integriert immernoch lnx, [ok] aber jetz hab ich trotz
> Partialsummenzerlegung beim letzten Term immernoch x im
> Zähler und im Nenner...

Ja, das letzte Integral ist etwas anspruchsvoller:

Es ist [mm] $-\int{\frac{x}{x^2+x+1} \ dx}=-\frac{1}{2}\cdot{}\int{\frac{2x}{x^2+x+1} \ dx}=-\frac{1}{2}\cdot{}\int{\frac{2x\red{+1-1}}{x^2+x+1} \ dx}=-\frac{1}{2}\cdot{}\left(\int{\frac{2x+1}{x^2+x+1} \ dx}-\int{\frac{1}{x^2+x+1} \ dx}\right)$ [/mm]

Das erstere ist nun ein logarithmisches Integral, kennst du dafür eine Stammfunktion? Falls nicht, substituiere den Nenner [mm] $u:=x^2+x+1$ [/mm] ..

Das letztere (ohne die Vorfaktoren) ist [mm] $\int{\frac{1}{x^2+x+1} \ dx}=\int{\frac{1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}} \ dx}=\int{\frac{1}{\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2} \ dx}$ [/mm]

Kommst du hier auf eine passende Substitution?

Du kennst bestimmt [mm] $\int{\frac{1}{z^2+1} \ dz}=....$ [/mm]

LG

schachuzipus



Bezug
                                                                
Bezug
Integral eines Bruchs: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:10 Do 04.06.2009
Autor: Einheit21

ok, ich danke euch für eure Bemühungen mir die Welt des Integrierens näher zu bringen ;)
Es is mir schon um einiges Klarer wie das ganze Funktioniert und mit ein bisschen nachschlagewerk denke ich komm ich auch zur Lösung. Danke ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]