Integral lösen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:02 Di 03.12.2013 | Autor: | LeWi |
Aufgabe | Zeigen Sie:
[mm] \integral_{}^{}{f(x) dx}=(e^{x}+1)/(e^{x}-1) [/mm] dx = [mm] -x+2ln(e^{x}-1) [/mm] +C
Wobei C [mm] \in \IR [/mm] eine beliebige Konstante ist- |
Wie löse ich dieses Integral, ich hab mehrere Ansätze ausprobiert bin aber nie zum richtigen Ergebnis gekommen. Ich verzweifle langsam an dieser Aufgabe! Ich weiß zwar, dass ich Integration durch Substitution machen muss und ich das Integral in [mm] [e^{x} [/mm] / [mm] (e^{x} [/mm] -1)] + [mm] [1/(e^{x}-1)] [/mm] aufspalten kann und [mm] 1/(e^{x}-1) [/mm] integreirt [mm] ln(e^{x}-1) [/mm] ist, aber weiter komme ich nicht.
Vielen Dank für eure Hilfe!!
Ps: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.!
|
|
|
|
Hallo und
> Zeigen Sie:
>
>
> [mm]\integral_{}^{}{f(x) dx}=(e^{x}+1)/(e^{x}-1)[/mm] dx =
> [mm]-x+2ln(e^{x}-1)[/mm] +C
>
> Wobei C [mm]\in \IR[/mm] eine beliebige Konstante ist-
> Wie löse ich dieses Integral, ich hab mehrere Ansätze
> ausprobiert bin aber nie zum richtigen Ergebnis gekommen.
> Ich verzweifle langsam an dieser Aufgabe! Ich weiß zwar,
> dass ich Integration durch Substitution machen muss und ich
> das Integral in [mm][e^{x}[/mm] / [mm](e^{x}[/mm] -1)] + [mm][1/(e^{x}-1)][/mm]
> aufspalten kann und [mm]1/(e^{x}-1)[/mm] integreirt [mm]ln(e^{x}-1)[/mm] ist,
> aber weiter komme ich nicht.
>
Sicher, dass du das machen musst? So, wie die Aufgabe gestellt ist, würde es ausreichen, die angegebene Stammfunktion abzuleiten. Dabei muss der Integrand herauskommen und die Sache ist im Kasten.
Bei der Substitution machst du einen Fehler. Der Bruch
[mm] \bruch{1}{e^x-1}
[/mm]
ergibt integriert [mm] ln|1-e^{-x}|+C. [/mm] Rechne das mal nach und überlege dir, wie man da hinkommt (erweitere den Integranden geeignet).
Gruß, Diophant
|
|
|
|