www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegral über einen Graphen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integrationstheorie" - Integral über einen Graphen
Integral über einen Graphen < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral über einen Graphen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:33 Di 24.06.2008
Autor: phoboid

Aufgabe
Berechnen Sie das Integral
[mm]\int_M \frac{x^2+y^2}{\sqrt{1+4z(x^2+y^2)}}dS[/mm]
über den Graphen [mm]M=\{(x,y,z)\in\mathbb{R}^3 \mid z=x^2y^2, x^2+y^2 \leq 1\}[/mm]

Die Musterlösung gibt als nächsten Schritt an,
dass das obige Integral zu [mm]\int_{B_1(0)} (x^2 + y^2) dx dy[/mm]
wird. Ich habe nur keinen Schimmer, wie man darauf kommt :/
Meine erste Idee war, den Transformationssatz zu verwenden, z.b.
mit [mm]\phi (x,y,z) = (x, y, x^2 y^2)[/mm],
doch leider wird die Determinante von [mm]d\phi[/mm] 0.
Ich bin für jeden Tipp dankbar!

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=105709

        
Bezug
Integral über einen Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Fr 27.06.2008
Autor: Leopold_Gast

Ist

[mm]M: \ \ (x,y,z) = \varphi(u,v) \ \ \mbox{mit} \ \ (u,v) \in A[/mm]

eine stetig differenzierbare Parameterdarstellung einer Fläche [mm]M[/mm], so gilt definitionsgemäß

[mm]\int_M f(x,y,z)~\mathrm{d} \sigma = \int_A f \left( \varphi(u,v) \right) \cdot \left| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right|~\mathrm{d}(u,v)[/mm]

Man setzt dabei [mm]f[/mm] als stetig auf [mm]M[/mm] voraus, und natürlich sollte auf der rechten Seite [mm]A[/mm] ein sinnvoller Integrationsbereich sein. Die senkrechten Striche stehen für die euklidische Norm, das Kreuz für das Vektorprodukt im [mm]\mathbb{R}^3[/mm].
Fasse also einfach die rechte Seite der obigen Gleichung als Definition für die linke Seite auf.

In der konkreten Aufgabe ist [mm]A[/mm] der Einheitskreis:

[mm]A: \ \ u^2 + v^2 \leq 1[/mm]

Jedem [mm](u,v) \in A[/mm] wird nun ein Punkt

[mm](x,y,z) = \varphi(u,v) = (u,v,u^2 v^2)[/mm]

zugeordnet. Diese Punkte [mm](x,y,z)[/mm] bilden eine Fläche im [mm]\mathbb{R}^3[/mm], die sich über dem Einheitskreis [mm]x^2 + y^2 \leq 1[/mm] wellt. Das ist eben gerade der Graph der Funktion [mm](x,y) \mapsto z = x^2 y^2[/mm] (zur Erläuterung siehe unten bei (*)). Stelle dir ein Marmeladenglas vor, das mit einem Tuch oben bespannt ist, welches nicht ganz fest sitzt und daher Wellenlinien bildet.

Nun berechnet man

[mm]\frac{\partial \varphi}{\partial u} = \begin{pmatrix} 1 \\ 0 \\ 2uv^2 \end{pmatrix} \, , \ \ \frac{\partial \varphi}{\partial v} = \begin{pmatrix} 0 \\ 1 \\ 2u^2 v \end{pmatrix}[/mm]

Davon das Kreuzprodukt:

[mm]\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} = \begin{pmatrix} -2uv^2 \\ -2u^2 v \\ 1 \end{pmatrix}[/mm]

und sein Betrag:

[mm]\left| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right| = \sqrt{4u^2 v^4 + 4u^4 v^2 + 1} = \sqrt{1 + 4u^2 v^2 \left( u^2 + v^2 \right)}[/mm]

Daher gilt gemäß obiger Definition

[mm]\int_M \frac{x^2 + y^2}{\sqrt{1 + 4z \left( x^2 + y^2 \right)}}~\mathrm{d} \sigma = \int \limits_{u^2 + v^2 \leq 1} \frac{u^2 + v^2}{\sqrt{1 + 4u^2 v^2 \left( u^2 + v^2 \right)}} \cdot \sqrt{1 + 4u^2 v^2 \left( u^2 + v^2 \right)}~\mathrm{d}(u,v)[/mm]

[mm]= \int \limits_{u^2 + v^2 \leq 1} \left( u^2 + v^2 \right)~\mathrm{d}(u,v)[/mm]


(*) Wenn dich diese Variablenumbenennungen irritieren, so betrachte das Ganze eine Dimension tiefer. Nimm etwa den Graphen der Funktion [mm]x \mapsto y = x^2[/mm] mit [mm]x \in [-1,1][/mm]. Das ist ein Stück einer Parabel. Wenn du nun diese Parabel als Kurve parametrisieren sollst, kannst du ihre Punkte [mm](x,y)[/mm] so beschreiben:

[mm](x,y) = \varphi(t) = (t,t^2) \ \ \mbox{mit} \ \ t \in[-1,1][/mm]

Dieses [mm]\varphi(t)[/mm] ist eine Parameterdarstellung der Kurve. Mit einer Variablen [mm]t[/mm] parametrisiert man eben eine Kurve, mit zwei Parametern [mm]u,v[/mm] eine Fläche.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]