www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegral zweier Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Integral zweier Funktionen
Integral zweier Funktionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral zweier Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 So 11.06.2006
Autor: Mystoph

Aufgabe
Sei Q  [mm] \subset \IR^n [/mm] ein Quader und f, g : Q  [mm] \to \IR [/mm] beschränkte, integrierbare Funktionen, die überall bis auf einen Punkt übereinstimmen. Beweisen Sie, dass   [mm] \integral_{Q}^{}{f}=\integral_{Q}^{}{g} [/mm]

Hallo zusammen,

mein Ansatz zu obiger Aufgabe ist relativ simpel, deshalb wollte ich hier nachfragen, ob das wirklich so einfach zu lösen ist, oder ob ich hier etwas durcheinander bringe...

Also um zu zeigen, dass das Integral beider Funktionen gleich ist, genügt doch zu zeigen, dass die Punkte (hier: Der Punkt) an dem die Funktionen nicht übereinstimmen eine Nullmenge sind.

Und wie zeig ich (wenn meine Vermutung denn stimmt) dass dieser Punkt hier eine Nullmenge ist? Ist meiner Meinung nach ziemlich offensichtlich, da Q Quader und P Punkt...?

Vielen Dank für eine Antwort oder Hinweise!
Gruss Christoph


Ich habe diese Frage in keinem anderen Forum oder sonst wo im Internet gestellt!

        
Bezug
Integral zweier Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Mo 12.06.2006
Autor: banachella

Hallo!

Der Trick dürfte wohl sein, den Quader $Q$ in immer kleinere Quader zu zerlegen. Bezeichne zunächst mal mit [mm] $p\in [/mm] Q$ den Punkt, an dem [mm] $f(p)\ne [/mm] g(p)$. Jetzt kannst du zum Beispiel ein Art Invervallschachtelung - oder vielmehr "Quaderschachtelung" - machen:
Setze [mm] $Q_0:=Q$. [/mm]
Sei nun [mm] $Q_n$ [/mm] mit [mm] $p\in Q_n$, $\int [/mm] _Q [mm] f-g=\int_{Q_n}f-g$ [/mm] und [mm] $\lambda(Q_n)=\frac 1{2^n}\lambda(Q)$ [/mm] bereits konstruiert. (Für $n=0$ gilt das ja trivialerweise.) Zerlege [mm] $Q_n$ [/mm] wieder in zwei gleich große Quader, bezeichne den von beiden, der $p$ enthält, mit [mm] $Q_{n+1}$. [/mm] Es gilt
Es gilt [mm] $\int_Q f-g=\int_{Q_n}f-g=\int_{Q_{n+1}}f-g+\int_{Q_n\setminus Q_{n+1}}f-g=\int_{Q_{n+1}}f-g$. [/mm]

Jetzt hast du:
[mm] $|\int_Q f-g|=|\int _{Q_n}f-g|\le \lambda(Q_n)|f(p)-g(p)|=\frac 1{2^n}\lambda(Q)|f(p)-g(p)|\to [/mm] 0$.

[mm] $\lambda$ [/mm] bezeichnet hierbei immer das Lebesgue-Maß.

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]