www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegrale Substitutionsregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Integrale Substitutionsregel
Integrale Substitutionsregel < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale Substitutionsregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Do 07.02.2008
Autor: NangNang

Aufgabe
[mm] \integral_{}^{}{f(x)\bruch{1}{x} \bruch{1}{\wurzel{1+2lnx}} dx} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Zusammen!

Da dies mein erster Eintrag in diesem Forum ist bitte ich um Nachsicht.

Dennoch wäre es toll wenn ihr mir weiterhelfen könntet!

Die Aufgabe ist dieses unbestimmte Integral zu bestimmen.

Meiner Meinung nach ist hier die Substitution vorteilhaft. Komme nur an bei der Aufleitung nicht weiter.

[mm] \integral_{}^{}{f(x)\bruch{1}{x} \bruch{1}{\wurzel{1+2lnx}} dx} [/mm]

habe Y(substitut)=lnx

[mm] f'(x)=\bruch{dy}{dx}=\bruch{1}{x} [/mm]

-> dx= [mm] x\*dy [/mm]


Wenn ich dies einsetze kommt dann dies heraus:

[mm] \integral_{}^{}{f(x) \bruch{1}{x} \bruch{1}{\wurzel{1+2y}}dy} [/mm]

wobei sich das x wegkürzt und folgender Ausdruck herauskommt:

[mm] \integral_{}^{}{f(x) \bruch{1}{\wurzel{1+2y}}dy} [/mm]

Dies kann man dann vereinfachen:

[mm] \integral_{}^{}{f(x) (1+2y)^\bruch{-1}{2}} [/mm]

(in worten : minus hoch 1/2 , damit es nicht zu verwirrungen kommt)

hier komm ich nicht weiter, weil jetzt müsste man es aufleiten, richtig?

Und das krieg ich leider nicht hin, kann mir da einer helfen?

Vielen Dank schon mal.

Grüße..

        
Bezug
Integrale Substitutionsregel: andere Substitution
Status: (Antwort) fertig Status 
Datum: 17:04 Do 07.02.2008
Autor: Roadrunner

Hallo NangNang,

[willkommenmr] !!


Auch Dein weg führt zum Ziel. Einfacher wird es jedoch, wenn Du $z \ := \ [mm] 1+\ln(x)$ [/mm] substituierst.


Gruß vom
Roadrunner


Bezug
                
Bezug
Integrale Substitutionsregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:02 Do 07.02.2008
Autor: NangNang

Ja das mag natürlich richtig sein, aber dennoch hilft mir das bei dem Aufleiten des letzten Terms nicht.

Das ist ja mein Problem sozusagen.


Grüße, NangNang

Bezug
                        
Bezug
Integrale Substitutionsregel: noch eine Substitution
Status: (Antwort) fertig Status 
Datum: 18:05 Do 07.02.2008
Autor: Roadrunner

Hallo NangNang!


Du kannst ja hier nochmals substituieren mit $t \ := \ 1+2*y$ und anschließend mittels MBPotenzregel integrieren.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]