www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisIntegrale berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Integrale berechnen
Integrale berechnen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 So 29.06.2008
Autor: sie-nuss

Aufgabe
Berechne mit Hilfe des Cauchyschen Integralsatzes und der Cauchyschen Integralformel die Integrale:

[mm] \integral_{\gamma_{1,\bruch{3}{2}}}^{ }{\bruch{w^{7}+1}{w^{2}(w^{4}+1)} dw} [/mm]

[mm] \bruch{1}{2\pi i}\integral_{\gamma_{-i,1}}^{ }{\bruch{e^{w}}{w^{2}+9}dw} [/mm]



Hallo zusammen,

Ich krieg das irgendwie nicht hin. Ich weiß auch gar nicht, wie ich da z.B. die Formel für Ableitungen (ich denk mal die brauchen wir) benutzen soll, denn der Nenner in beiden Aufgaben ist ja nicht der Form [mm] (w-z)^{n} [/mm] so wie's in der Formel ist... Oder brauch ich die hier gar nicht?

Aber in der Integralformel für Kreisscheiben braucht man einen Nenner der Form (w-z) also ginge das doch auch nicht.

Ich würd mich sehr über Hilfe freuen!

Liebe Grüße!

sie-nuss

        
Bezug
Integrale berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:42 Mo 30.06.2008
Autor: rainerS

Hallo!

> Berechne mit Hilfe des Cauchyschen Integralsatzes und der
> Cauchyschen Integralformel die Integrale:
>  
> [mm]\integral_{\gamma_{1,\bruch{3}{2}}}^{ }{\bruch{w^{7}+1}{w^{2}(w^{4}+1)} dw}[/mm]
>  
> [mm]\bruch{1}{2\pi i}\integral_{\gamma_{-i,1}}^{ }{\bruch{e^{w}}{w^{2}+9}dw}[/mm]
>  
>
>
> Hallo zusammen,
>
> Ich krieg das irgendwie nicht hin. Ich weiß auch gar nicht,
> wie ich da z.B. die Formel für Ableitungen (ich denk mal
> die brauchen wir) benutzen soll, denn der Nenner in beiden
> Aufgaben ist ja nicht der Form [mm](w-z)^{n}[/mm] so wie's in der
> Formel ist... Oder brauch ich die hier gar nicht?
>
> Aber in der Integralformel für Kreisscheiben braucht man
> einen Nenner der Form (w-z) also ginge das doch auch nicht.

Du musst dich von der Vorstellung verabschieden, dass der Zähler des Bruches gerade die Funktion f(z) aus der Cauchyschen Integralformel ist. Die Integralformel gilt für jede in dem entsprechenden Gebiet holomorphe Funktion f(z), das kann auch selber ein Bruch sein.

Also: schau dir die Integrationswege an und welche der Nennernullstellen im Innern liegen.

Viele Grüße
   Rainer

Bezug
                
Bezug
Integrale berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:32 Mo 30.06.2008
Autor: sie-nuss

Hallo Rainer,

also im ersten Integral liegt die 0 im inneren des Kreises, im zweiten gibt's gar keine nullstellen... oder? weil [mm] w^{2} [/mm] wird ja nicht -9

Ich sehe aber leider immernoch nicht wie ich die Integralformel jetzt anwende. Sie lautet ja [mm] f(z)=\bruch{1}{2\pi i}\integral_{\gamma}^{ }{\bruch{f(w)}{w-z} dw} [/mm]

Also die Funktion f(w) in der Formel ist jetzt alles was in der Aufgabe hinter dem Integral steht?
Und was ist mit (w-z) ?

Liebe Grüße und Danke für die Hilfe!

sie-nuss


Bezug
                        
Bezug
Integrale berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:20 Mo 30.06.2008
Autor: rainerS

Hallo!

> also im ersten Integral liegt die 0 im inneren des Kreises,

Was ist mit den Nullstellen von [mm] $w^4+1$ [/mm]  ?

> im zweiten gibt's gar keine nullstellen... oder? weil [mm]w^{2}[/mm]
> wird ja nicht -9

Wir sind hier doch im Komplexen, also sind [mm] $\pm3i$ [/mm] Nullstellen.

> Ich sehe aber leider immernoch nicht wie ich die
> Integralformel jetzt anwende. Sie lautet ja
> [mm]f(z)=\bruch{1}{2\pi i}\integral_{\gamma}^{ }{\bruch{f(w)}{w-z} dw}[/mm]
>  
> Also die Funktion f(w) in der Formel ist jetzt alles was in
> der Aufgabe hinter dem Integral steht?

Nein, du musst den Integranden, genauer gesagt den Nenner geschickt aufteilen, damit du diese Form hast. Deswegen die Frage, welche der Nennernullstellen innerhalb des Kreises liegen. Diejenigen Faktoren im Nenner, die dort nicht 0 werden, kannst du zu f(w) hinzunehmen.

Mach das erst einmal mit dem zweiten Integral, das erste ist komplizierter.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]