www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisIntegrale offener Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Integrale offener Mengen
Integrale offener Mengen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale offener Mengen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:52 Mi 01.06.2011
Autor: Rubstudent88

Aufgabe
Die Punkte in der folgenden Zeichnugn repräsentieren i und -i. Berechnen Sie das jeweilige Integral [mm] \integral_{\partial U}{\bruch{e^{z}}{1+z^{2}} dz} [/mm]

[Dateianhang nicht öffentlich]

Hallo zusammen,

könnte mir jemand bei dieser Aufgabe beispielhaft erklären, wie ich das Integral für diese verschiedenen offenen Mengen berechne?
Worauf kommt es bei dieser Aufgabe an? Ich vermute dass man hier mit Zweiformen oder der Cauchy-Integrationsformel arbeiten muss?

Beste Grüße

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Integrale offener Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 Mi 01.06.2011
Autor: rainerS

Hallo!

> Die Punkte in der folgenden Zeichnugn repräsentieren i und
> -i. Berechnen Sie das jeweilige Integral
> [mm]\integral_{\partial U}{\bruch{e^{z}}{1+z^{2}} dz}[/mm]
>  
> [Dateianhang nicht öffentlich]
>  Hallo zusammen,
>  
> könnte mir jemand bei dieser Aufgabe beispielhaft
> erklären, wie ich das Integral für diese verschiedenen
> offenen Mengen berechne?
>  Worauf kommt es bei dieser Aufgabe an? Ich vermute dass
> man hier mit Zweiformen oder der Cauchy-Integrationsformel
> arbeiten muss?

Mach die Partialbruchzerlegung von [mm] $\bruch{1}{1+z^2}$ [/mm] und wende die Integralformel von Cauchy an.

(Für das zweite und sechste Integral brauchst du nicht mal die Partialbruchzerlegung; der Integralsatz von Cauchy sagt dir sofort, das beide 0 sind. Das fünfte ist offensichtlich die Differenz des ersten und des zweiten.)

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]