www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisIntegralformel von Cauchy
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Integralformel von Cauchy
Integralformel von Cauchy < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralformel von Cauchy: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:22 Di 14.05.2013
Autor: saendra

Aufgabe
Hey!!

Es hängt bei mir: Ich soll $ [mm] \integral_{\partial B_2(0)}{\bruch{1}{z^4-1} dz} [/mm] $ mit der Cauchy-Integralformel bestimmen, wobei $ [mm] \partial B_2(0) [/mm] $  den Weg $ [mm] \gamma :[0,1]\to \IC [/mm] ,\ [mm] \gamma [/mm] (t)= [mm] 2e^{2\pi it} [/mm] $ bezeichnet.

Leider kann ich das Integral nicht umformen: $ [mm] \integral_{\partial B_2(0)}{\bruch{1}{z^4-1} dz} [/mm] = [mm] \dots \integral_{\partial B_2(0)}{\bruch{\bruch{1}{(z^2+1)(z+1)}}{z-1} dz} [/mm] $,


weil der Zähler, also das $ f(z) $ in der Cauchy-Formel z.B. für $ z=-1 $ eine Deifinitionslücke hat. Aber es ist ja $ -1 [mm] \in B_2(0) [/mm] $ und auf ganz $ [mm] B_2(0) [/mm] $ muss $ f $ (der Zähler) ja holomorph sein. Aber an einem Punkt, an dem eine Funktion nicht definiert ist, kann sie ja schlecht holomorph sein...

Kann mir jemand helfen?

GLG Sandra

        
Bezug
Integralformel von Cauchy: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Di 14.05.2013
Autor: fred97


> Hey!!
>  
> Es hängt bei mir: Ich soll [mm]\integral_{\partial B_2(0)}{\bruch{1}{z^4-1} dz}[/mm]
> mit der Cauchy-Integralformel bestimmen, wobei [mm]\partial B_2(0)[/mm]
>  den Weg [mm]\gamma :[0,1]\to \IC ,\ \gamma (t)= 2e^{2\pi it}[/mm]
> bezeichnet.
>  Leider kann ich das Integral nicht umformen:
> [mm]\integral_{\partial B_2(0)}{\bruch{1}{z^4-1} dz} = \dots \integral_{\partial B_2(0)}{\bruch{\bruch{1}{(z^2+1)(z+1)}}{z-1} dz} [/mm],

Das ist doch Unfug !!


>  
>
> weil der Zähler, also das [mm]f(z)[/mm] in der Cauchy-Formel z.B.
> für [mm]z=-1[/mm] eine Deifinitionslücke hat. Aber es ist ja [mm]-1 \in B_2(0)[/mm]
> und auf ganz [mm]B_2(0)[/mm] muss [mm]f[/mm] (der Zähler) ja holomorph sein.
> Aber an einem Punkt, an dem eine Funktion nicht definiert
> ist, kann sie ja schlecht holomorph sein...
>  
> Kann mir jemand helfen?

Zauberwort: Partialbruchzerlegung. Die Lösungen der Gl [mm] z^4-1=0 [/mm] sind

                [mm] $\pm1$ [/mm] und $ [mm] \pm [/mm] i$

Finde nun Zahlen a,b,c und d mit:

[mm] \bruch{1}{z^4-1}=\bruch{a}{z-1}+\bruch{b}{z+1}+\bruch{c}{z-i}+\bruch{d}{z+i} [/mm]

Für $w [mm] \in \{1,-1,i,-i\}$ [/mm] ist

   $ [mm] \integral_{\partial B_2(0)}{\bruch{1}{z-w} dz}=2 \pi [/mm] i$

Warum ?

FRED


>  
> GLG Sandra


Bezug
                
Bezug
Integralformel von Cauchy: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:17 Di 14.05.2013
Autor: saendra

Ahhh okay, die die Partialbruchzerlegung hatte ich schon durchgeführt, aber dass  $ [mm] \integral_{\partial B_2(0)}{\bruch{1}{z-w} dz}=2 \pi [/mm] i $ für $ w [mm] \in \{1,-1,i,-i\} [/mm] $ gilt hatte ich vergessen. Das gilt nämlich weils bei uns im Skipt steht :-)

Vielen Dank!

Bezug
                        
Bezug
Integralformel von Cauchy: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Di 14.05.2013
Autor: fred97


> Ahhh okay, die die Partialbruchzerlegung hatte ich schon
> durchgeführt, aber dass  [mm]\integral_{\partial B_2(0)}{\bruch{1}{z-w} dz}=2 \pi i[/mm]
> für [mm]w \in \{1,-1,i,-i\}[/mm] gilt hatte ich vergessen.



>  Das gilt
> nämlich weils bei uns im Skipt steht :-)

Das ist ja eine waaaaahnsinig tolle Begründung !

FRED

>  
> Vielen Dank!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]