www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegralkriterium für Konverge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Integralkriterium für Konverge
Integralkriterium für Konverge < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralkriterium für Konverge: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:16 Mi 04.05.2005
Autor: Tinchen

Hallo Leute!
Hier habe ich noch ´ne schöne schwere Aufgabe, mit der ich nichts anfangen kann! Kann jemand helfen?
Untersuchen Sie die Reihe  [mm] \summe_{j=0}^{\infty} (-1)^j x^{2j} [/mm] im Intervall [-q,q] bei beliebigem, aber festem q  [mm] \in [/mm] (0,1) sqwie im Intervall (-1,1) auf gleichmäßige Konvergenz.
Unter Verwendung von oben genannten gebe man eine Potenzreihendarstellung für arctan(x) im Intervall (-1,1) an.

        
Bezug
Integralkriterium für Konverge: Formel falsch?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:17 Mi 04.05.2005
Autor: leduart

Hallo
kannst du dir noch mal dein Formel ansehen? sie sieht falsch aus!
Gruss leduart

Bezug
        
Bezug
Integralkriterium für Konverge: Korrigiert
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mi 04.05.2005
Autor: Paulus

Hallo

ich habe die Formel doch korrigiert! Ist sie denn immer noch falsch?

So ist es mir jedenfalls gelungen, diese bis auf die Form [mm] $\bruch{1}{x^2+1}$ [/mm] zu vereinfachen (Geometrische Reihe), und dann scheint sie ja zu stimmen, weil der Arcustangens doch eine Stammfunktion davon ist?!

Mit lieben Grüssen

Paul

Bezug
                
Bezug
Integralkriterium für Konverge: Alles Korrekt
Status: (Antwort) fertig Status 
Datum: 21:45 Mi 04.05.2005
Autor: volta

Jo, das stimmt soweit (ich sitz' mit Tinchen in der selben Übung). Den Trick mit der geometrischen Reihe hab ich mir auch gedacht (Ist das nicht etwas zu leicht?!?).
Nun weiss man ja, daß [mm] $\integral_{0}^{x} {\bruch{dt}{1+t^{2}}} [/mm] = [mm] \arctan(x)$. [/mm]
Also muss das wegen der gleichmäßigen Konvergenz auch für die Reihe gelten:
[mm] $\integral_{0}^{x} {\summe_{j=0}^{\infty}(-t^{2})^{j} dt} [/mm] = [mm] \summe_{j=0}^{\infty}(-1)^{j}\integral_{0}^{x} {t^{2} dt} [/mm] = [mm] \summe_{j=0}^{\infty}(-1)^{j} \bruch{x^{2j+1}}{2j+1}$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]