Integraloperator < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:37 So 06.06.2010 | Autor: | moerni |
Aufgabe | Sei k: [0,1]x[0,1] [mm] \to \mathbb{C} [/mm] stetig, K der Integraloperator [mm] (Kf)(t)=\int_{s=0}^1 [/mm] k(t,s)f(s)ds, f [mm] \in [/mm] C([0,1]). Beweise: K ist eine stetige Abbildung mit Norm [mm] \parallel [/mm] K [mm] \parallel [/mm] = [mm] sup_{t \in [0,1]} \int_{s=0}^1 [/mm] |k(t,s)|ds |
Hallo!
Ok, ich habe schon, dass K stetig ist, weil K linear ist und beschränkt. Außerdem habe ich die Abschätzung [mm] \parallel [/mm] K [mm] \parallel \le \sup_{t \in [0,1]} \int_{s=0}^1 [/mm] |k(t,s)|ds. Es fehlt mir also noch zu zeigen, dass [mm] \parallel [/mm] K [mm] \parallel \geq \sup_{t \in [0,1]} \int_{s=0}^1 [/mm] |k(t,s)|ds. Dazu wäre meine Idee, dass ich eine bestimmte Funktion f definiere, für die die Ungleichung gilt. Dann würde Gleichheit folgen. Ich kriege nur leider keine stetige Funktion f hin. Ginge das auch anders? Kann mir jemand helfen?
Über eine Antwort wäre ich sehr dankbar!
lg moerni
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:19 Mo 07.06.2010 | Autor: | fred97 |
> Sei k: [0,1]x[0,1] [mm]\to \mathbb{C}[/mm] stetig, K der
> Integraloperator [mm](Kf)(t)=\int_{s=0}^1[/mm] k(t,s)f(s)ds, f [mm]\in[/mm]
> C([0,1]). Beweise: K ist eine stetige Abbildung mit Norm
> [mm]\parallel[/mm] K [mm]\parallel[/mm] = [mm]sup_{t \in [0,1]} \int_{s=0}^1[/mm]
> |k(t,s)|ds
> Hallo!
>
> Ok, ich habe schon, dass K stetig ist, weil K linear ist
> und beschränkt. Außerdem habe ich die Abschätzung
> [mm]\parallel[/mm] K [mm]\parallel \le \sup_{t \in [0,1]} \int_{s=0}^1[/mm]
> |k(t,s)|ds. Es fehlt mir also noch zu zeigen, dass
> [mm]\parallel[/mm] K [mm]\parallel \geq \sup_{t \in [0,1]} \int_{s=0}^1[/mm]
> |k(t,s)|ds. Dazu wäre meine Idee, dass ich eine bestimmte
> Funktion f definiere, für die die Ungleichung gilt. Dann
> würde Gleichheit folgen. Ich kriege nur leider keine
> stetige Funktion f hin.
Das ist auch nicht einfach !!! Schau mal nach in H.Heuser, Funktionalanalysis, Satz 10.8
FRED
Ginge das auch anders? Kann mir
> jemand helfen?
>
> Über eine Antwort wäre ich sehr dankbar!
> lg moerni
|
|
|
|