www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegralrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Idee, Tipp
Status: (Frage) überfällig Status 
Datum: 15:36 Mo 03.07.2006
Autor: Lisalou

Aufgabe
Die Fläche zwischen dem Graphen von f und g im Intervall [a,b] berechnet man als  [mm] \integral_{a}^{b}{f(x) dx}(f(x)-g(x)) [/mm] dx
Man zeige, dass dies für Polygones den elementargeometrischen Flächeninhalt liefert

Wie zeigt man das denn? Kann das nicht beweisen, könnte das evt bildlich als Grafik mit zwei normalen Funktionen veranschaulichen, aber nicht als Vieleck...
Könnt ihr mir mal einen Ansatz geben, am Besten heute noch?

Gruß Lisalou

        
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:18 Mo 03.07.2006
Autor: Walde

hi Anna,

kontrolliere nochmal bitte, ob im Integral wirklich zweimal dx steht. Das scheint mir nicht richtig. Könnte es vielleicht einfach [mm] \integral_{a}^{b}{f(x)-g(x) dx} [/mm] heissen?

Polygone sind einfach Vielecke, oder? Auf jeden Fall würde ich sagen, müsstest du versuchen das Polygon so aufzuteilen (in oben und unten), dass du den oberen und unteren Rand durch abschnittsweise definierte Funktionen (Geraden) darstellen kannst. Dann müsstest du den Flächeninhalt mit der Formel einfach berechnen können.


L G walde

Bezug
                
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:55 Mo 03.07.2006
Autor: Lisalou

Hmm *g* nein natürlich nicht, irgendwie kann ich mit diesen Zeichen hier unten nicht richtig umgehen...
also die Aufgabe heißt so :

Integral vonb nach a (f(x)-(g(x)) dx

Bezug
                        
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:45 Mo 03.07.2006
Autor: Walde

Hi Anna,

ja, dacht ich mir schon. Das Problem ist, ich weiss nicht genau, was ihr mit Polygon meint. Wenn es ein regelmässiges Polygon ist, gibt es dafür eine allgemeine Flächeninhaltsformel in der Wiki. Ansonsten hängt es nicht nur von der Anzahl der Eckpunkte ab, sondern auch wo diese liegen. Ich kann dir keinen allgemeinen Beweis dafür hinschrieben.
Einen Weg wie man darauf kommt, hab ich dir ja beschrieben.

Dein Objekt lässt sich in jedem Fall in eine obere und untere Hälfte aufteilen und zwar so, dass man den oberen (und unteren Rand) als Polygonzug formulieren kann. Also als eine Funktion f(x) (g(x) für den unteren Rand), die Abschnittsweise definiert ist und deren Abschnitte gerade die x-Werte der Punkte des Polygons sind, die oberhalb (unterhalb)der Aufteiltung in oben und unten liegen. Ich hab leider kein Zeichenprogramm,dass sowas gut malen kann. Ich hab dir mal ein Bild angehängt.

[Dateianhang nicht öffentlich]


Betrachte das Polygon, dass von den 5 Geraden eingegrenzt wird. Den oberen Rand kann man darstellen als

[mm] f(x)=\begin{cases} 0,5x+1, & \mbox{für } x\in[-1;2] \\ -0,5+3, & \mbox{für } x\in[2;6,67] \end{cases} [/mm]

die Abschnitte sind jeweils die Schnittpunkte der Geraden.(die Schnittpunkte hab ich abgelesen, müssen nicht exakt stimmen)

Analog kann man den untereren Rand angeben.

Andererseits kannst du das Polygon natürlich in Dreiecke usw. aufteilen und den Flächeninhalt herkömmlich bestimmen. Wie man daraus aber jetzt einen Beweis hinschreibt, so wie ihr das machen sollt, weiss ich auch nichtm tut mir leid.

L G walde


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
        
Bezug
Integralrechnung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 05.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]