www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegralrechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Frage!
Status: (Frage) für Interessierte Status 
Datum: 12:11 Mo 17.01.2005
Autor: jayda

Für k > 0 ist die Funktionsschargegeben durch [mm] f_{k} [/mm] (x)= kx (x-4).

Bestimmt k so, dass die Fläche zwischen den Geraden y =x und dem Graphen von [mm] f_{k} [/mm] einen minimalen Flächeinhalt hat.

Komme bei dieser Aufgabe nichts weiter.





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Integralrechnung: Eigene Lösungsvorschläge?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:05 Mo 17.01.2005
Autor: Loddar

Hallo jayda!

[willkommenmr] !!

Bitte lies' Dir doch mal unsere Forenregeln (genau) durch ...

Bei Deinem Anliegen (es ist ja nicht einmal eine Frage) fehlen Deine eigenen Ideen / Lösungsansätze! Daher wurde Deine Frage auf den Status "nur für Interessierte" gesetzt.

Auch wird hier eine nette Begrüßung jederzeit gerne gesehen ... ;-)


> Für k > 0 ist die Funktionsschar gegeben durch [mm]f_{k}(x)= k*x*(x-4)[/mm].
> Bestimmt k so, dass die Fläche zwischen den Geraden y =x
> und dem Graphen von [mm]f_{k}[/mm] einen minimalen Flächeinhalt
> hat.

Ein / zwei Hinweise kann ich Dir ja mal geben.
Damit probierst Du es einmal und lieferst dann Deine Ansätze, ok?


Die Fläche zwischen zwei Graphen wird berechnet mit:
$|A| = [mm] \integral_{a}^{b} [/mm] {[f(x)-g(x)] dx}$

Dabei sind die Integrationsgrenzen $a$ und $b$ die Schnittstellen (= x-Werte der Schnittpunkte) von [mm] $f_k$ [/mm] und $g$, die Du also vorher ermitteln mußt.

Damit erhältst Du eine Funktion $A(k)$, die dann nur noch von der Variable $k$ abhängig ist. Für diese Funktion ist dann eine Extremalberechnung durchzuführen.


Alles klar?

Loddar

Bezug
                
Bezug
Integralrechnung: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:26 Mo 17.01.2005
Autor: jayda

danke loddar!

danke für deine tipps.

meine lösungsansätze:

k [mm] x^{2} [/mm] -4kx= x

ich hab hierbei die funktion mit der gerade gleichgesetzt, da y=x.

x ( kx-k-1)= 0  ==> auf eine seite gebracht um nullstellen rauszufinden!

[mm] x_{1} [/mm] = 0                                      [mm] x_{2} [/mm] = (4k+1) / k     ==> korrekt?

und jetzt das integral:

[mm] \integral_{0}^{(4k+1) / k } [/mm] {???? dx}      ==>komme hier nicht weiter!


danke jayda

Bezug
                        
Bezug
Integralrechnung: Hinweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:55 Mi 19.01.2005
Autor: MathePower

Hallo jayda,

das Integral sieht wie folgt aus:

[mm]\int\limits_0^{\frac{{4k + 1}} {k}} {f_k \left( x \right)\; - \;g\left( x \right)\;dx} [/mm]

Berechne dieses Integral und werte es an den Grenzen aus.
Dann ist das eine Funktion A(k). Minimiere sodann die Funktion A(k), das heisst es muß A'(k)=0 sein. Dann muss man noch Aussagen treffen, ob das ein Minimum ist. Es muss A''(k)>0 sein.

Gruss
MathePower


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]