www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegralrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Integralrechnung
Integralrechnung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:52 Mi 20.02.2008
Autor: hasso

hallo....

eine frage zu Interalrechnung .. ich hab damit heut mal begonnen das zu lernen und hab mal ne frage ob das stimmt.

[mm] \integral_{1}^{4}{f(x)=3x^2-4x dx} [/mm]

So nun ist dann die Stammfunktion so. Die potenz erhöht sich um eins und die Potenzziffer setzt ich jeweils im nenner.

[mm] \bruch{3}{3}x^3 [/mm] - [mm] \bruch{4}{2}x^2 [/mm]

Das wär dann die Stammfunktion.

Wenn ich was falsches gesagt habe bitte ich das mich jemand konrrigiert.

So jetzt die hier:

f(x) ) [mm] \bruch{2}{x} [/mm] dx Hiervon möcht ich die Stammfunktion berechnen .

f(x)  [mm] \bruch{2}{x} [/mm]  ist ja das selbe wie [mm] \bruch{2}{1} [/mm]

f(x) [mm] \bruch{2}{2}x [/mm] dann wär ya das die Stammfunktion ist das so richtig ?


gruß hasso

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:59 Mi 20.02.2008
Autor: Tyskie84

Hallo!

> hallo....
>  
> eine frage zu Interalrechnung .. ich hab damit heut mal
> begonnen das zu lernen und hab mal ne frage ob das stimmt.
>  
> [mm]\integral_{1}^{4}{f(x)=3x^2-4x dx}[/mm]
>
> So nun ist dann die Stammfunktion so. Die potenz erhöht
> sich um eins und die Potenzziffer setzt ich jeweils im
> nenner.
>
> [mm]\bruch{3}{3}x^3[/mm] - [mm]\bruch{4}{2}x^2[/mm]
>  

[ok] dann noch etwas schöner aufschreiben F(x)=x³-2x²

> Das wär dann die Stammfunktion.
>
> Wenn ich was falsches gesagt habe bitte ich das mich jemand
> konrrigiert.
>  
> So jetzt die hier:
>  
> f(x) ) [mm]\bruch{2}{x}[/mm] dx Hiervon möcht ich die Stammfunktion
> berechnen .
>  
> f(x)  [mm]\bruch{2}{x}[/mm]  ist ja das selbe wie [mm]\bruch{2}{1}[/mm]

[notok] [mm] \bruch{2}{x}\not=\bruch{2}{1} [/mm]

>  
> f(x) [mm]\bruch{2}{2}x[/mm] dann wär ya das die Stammfunktion ist
> das so richtig ?

[notok] Die Stammfunktion einer Funktion der Form [mm] \bruch{1}{x} [/mm] ist F(x)=ln(x). Demnach wäre die Stammfunktion von [mm] \bruch{2}{x} [/mm] also F(x)=2ln(x)

>  
>
> gruß hasso

[cap] Gruß

Bezug
                
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:25 Mi 20.02.2008
Autor: hasso

Hallo


> > So jetzt die hier:
>  >  
> > f(x) ) [mm]\bruch{2}{x}[/mm] dx Hiervon möcht ich die Stammfunktion
> > berechnen .
>  >  
> > f(x)  [mm]\bruch{2}{x}[/mm]  ist ja das selbe wie [mm]\bruch{2}{1}[/mm]
>  [notok] [mm]\bruch{2}{x}\not=\bruch{2}{1}[/mm]
>  >  
> > f(x) [mm]\bruch{2}{2}x[/mm] dann wär ya das die Stammfunktion ist
> > das so richtig ?
>  [notok] Die Stammfunktion einer Funktion der Form
> [mm]\bruch{1}{x}[/mm] ist F(x)=ln(x). Demnach wäre die Stammfunktion
> von [mm]\bruch{2}{x}[/mm] also F(x)=2ln(x)

danke das ich das vor der Klausur schonmal weiß !

die aufgabe macht mir beim ableiten die schwirigkeiten.

f(x)= [mm] x^3 [/mm]
F(x)= [mm] \bruch{x^4}{4} [/mm]

Ich versteh irgendwie nicht warum die erste ableitung davon [mm] x^3 [/mm] ist.
Für sone ableitung wärs ja quatsch schon die Qoutienten regelan zuwenden. wie kann man das ohne Qoutientenregel ableiten ?

thx
gruß hasso

Bezug
                        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:32 Mi 20.02.2008
Autor: Tyskie84

Hallo!

Wir haben die Funktion [mm] F(x)=\bruch{x^{4}}{4} [/mm] Dann können wir das hier ein wenig umschreiben zu: [mm] F(x)=\bruch{1}{4}x^{4}. [/mm] Nun brauchen wir nur noch [mm] x^{4} [/mm] ableiten und die Ableitung von [mm] x^{4} [/mm] ist [mm] f(x)=4x^{3} [/mm] Also folgt für unsere Ableitung insgesamt [mm] f(x)=\bruch{1}{4}*4x^{3}=x^{3} [/mm]

[cap] Gruß

Bezug
                                
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:32 Mi 20.02.2008
Autor: hasso

hey....
cool das mit dem umschreiben hab ich mir gemerkt!!

hmm die aufgabe die versteh ich gar nicht.

3 [mm] \wurzel[3]{x} [/mm]

hiervon die Stammfunktion berechnen . 0 ahnung

ich könnts höchstens umschreiben weiß nicht ob dann es einacher ist die Stammfunktion zu berechnen .

[mm] 3(x)^\bruch{1}{3} [/mm]

oh dann..

3x [mm] (x)^\bruch{4}{3} [/mm]
______
   [mm] \bruch{4}{3} [/mm]


F(x)=3x [mm] \bruch{1}{4/3} x^\bruch{4}{3} [/mm]

also das was ich gerechnet habe ist mir grad einfach so eingefallen als ich das umgeschrieben habe.. Kann es sein das es stimmt ????????

gruß hasso


Bezug
                                        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 02:49 Mi 20.02.2008
Autor: Sabah


> hey....
> cool das mit dem umschreiben hab ich mir gemerkt!!
>
> hmm die aufgabe die versteh ich gar nicht.
>  
> 3 [mm]\wurzel[3]{x}[/mm]
>  
> hiervon die Stammfunktion berechnen . 0 ahnung
>  
> ich könnts höchstens umschreiben weiß nicht ob dann es
> einacher ist die Stammfunktion zu berechnen .
>  
> [mm]3(x)^\bruch{1}{3}[/mm]  [ok]

[mm] \integral_{}^{}{3(x)^\bruch{1}{3} dx}=3\integral_{}^{}{x^\bruch{1}{3} dx} [/mm]

Jetzt kannst du [mm] x^\bruch{1}{3} [/mm] aufleiten, und dann am ende mit 3 multipliezieren.

> oh dann..[notok]
>  
> 3x [mm](x)^\bruch{4}{3}[/mm]
> ______
>     [mm]\bruch{4}{3}[/mm]
>  
>
> F(x)=3x [mm]\bruch{1}{4/3} x^\bruch{4}{3}[/mm]
>  
> also das was ich gerechnet habe ist mir grad einfach so
> eingefallen als ich das umgeschrieben habe.. Kann es sein
> das es stimmt ????????
>  
> gruß hasso
>  


Bezug
                                                
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:30 Mi 20.02.2008
Autor: hasso

Hallo


> > cool das mit dem umschreiben hab ich mir gemerkt!!
> >
> > hmm die aufgabe die versteh ich gar nicht.
>  >  
> > 3 [mm]\wurzel[3]{x}[/mm]
>  >  
> > hiervon die Stammfunktion berechnen . 0 ahnung
>  >  
> > ich könnts höchstens umschreiben weiß nicht ob dann es
> > einacher ist die Stammfunktion zu berechnen .
>  >  
> > [mm]3(x)^\bruch{1}{3}[/mm]  [ok]
>  [mm]\integral_{}^{}{3(x)^\bruch{1}{3} dx}=3\integral_{}^{}{x^\bruch{1}{3} dx}[/mm]
>  
> Jetzt kannst du [mm]x^\bruch{1}{3}[/mm] aufleiten, und dann am ende
> mit 3 multipliezieren.
>  
> > oh dann..[notok]
>  >  
> > 3x [mm](x)^\bruch{4}{3}[/mm]
> > ______
>  >     [mm]\bruch{4}{3}[/mm]
>  >  
> >
> > F(x)=3x [mm]\bruch{1}{4/3} x^\bruch{4}{3}[/mm]
>  >  
> > also das was ich gerechnet habe ist mir grad einfach so
> > eingefallen als ich das umgeschrieben habe.. Kann es sein
> > das es stimmt ??

was ist denn das der F(x) falsch ? wenn ich es normal ableite gelang ich ja wieder auf 3 [mm] x^\bruch{1}{3} [/mm]

weil [mm] \bruch{4}{3} [/mm] * [mm] \bruch{1}{4/3} [/mm] ist  3 [mm] x^\bruch{1}{3} [/mm]

gruß hasso

Bezug
                                                        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Mi 20.02.2008
Autor: leduart

Hallo hasso
Vielleicht has6t dus richtig gemeint und nur sehr komisch aufgeschrieben. die Stammfunktion von [mm] x^{1/3} [/mm] hast du richtig.
Dann hast du aber 3x davorgeschrieben, vielleicht hast du mit dem x ein Malzeichen gemeint, aber woher sollte man das wissen?
Das richtige Ergebnis ist :
[mm] 3*x^{4/3}/(4/3)=9/4*x^{4/3} [/mm]
Also kontrollier nach dem Schreiben nochmal, was da wirklich steht!
Gruss leduart

Bezug
                                                        
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:53 Mi 20.02.2008
Autor: Tyskie84

Hallo Hasso!

Wahrscheinlich hast du zuhause bestimmt unmengen von aufgaben aber ich gebe dir trotzdem noch eine gute Seite mit aufgaben speziel zu thema Differential-und Integralrechnung. Dort sind Beispiele und auch Übungsaufgaben aufgeführt.

[]Hier

[cap] Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]