www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenIntegralrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Integralrechnung
Integralrechnung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Weglänge
Status: (Frage) beantwortet Status 
Datum: 18:33 Fr 14.09.2012
Autor: Norton

Aufgabe
HAllo ich habe eine Aufgabe wo ich nicht weiter komme:

Berechnen Sie die L¨ange der folgenden Wege X



X (t) = ( [mm] t^3 [/mm] , 3/2 [mm] t^2 [/mm] , t element [1,2]

Hinweis beachte :  

[mm] \integral_{}^{}t*\wurzel{t^2 +a^2} [/mm]  dt = 1/3* [mm] \wurzel{(t^2 +a^2)^3} [/mm]

Mein Ansatz:

L(W) = [mm] \integral_{}^{}\wurzel{(3t^2)^2+ (3t)^2} [/mm]  dt

Aber ich weiss nicht wie ich weiter vorgehen soll.

Ich habe die frage in keinem forum gestellt.

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Fr 14.09.2012
Autor: schachuzipus

Hallo Norton,


> HAllo ich habe eine Aufgabe wo ich nicht weiter komme:
>  
> Berechnen Sie die L¨ange der folgenden Wege X
>  
>
>
> X (t) = ( [mm]t^3[/mm] , 3/2 [mm]t^2[/mm] , t element [1,2]
>  
> Hinweis beachte :  
>
> [mm]\integral_{}^{}t*\wurzel{t^2 +a^2}[/mm]  dt = 1/3* [mm]\wurzel{(t^2 +a^2)^3}[/mm]
>  
> Mein Ansatz:
>  
> L(W) = [mm]\integral_{}^{}\wurzel{(3t^2)^2+ (3t)^2}[/mm]  dt

Ja, in den Grenzen 1 und 2

>  
> Aber ich weiss nicht wie ich weiter vorgehen soll.

Forme um, so dass du den Hinweis benutzen kannst; beachte, dass unter der Wurzel [mm]9t^4+9t^2[/mm] steht, du also [mm]9t^2[/mm] mal ausklammern und aus der Wurzel ziehen kannst ...

>  Ich habe die frage in keinem forum gestellt.

Gruß

schachuzipus


Bezug
                
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 Fr 14.09.2012
Autor: Norton

Ah ok dann hätte ich das stehen:

L(W)= [mm] \integral_{1}^{2}3t*\wurzel{t^2 +1} [/mm]  dt

Ich bin mir nicht sicher , kann man jetzt irgendwie den hinweis benutzen:

L(W)= [mm] \integral_{1}^{2}\wurzel{t^2 +1}^3 [/mm]  dt

Ich weiss nicht ob das so richtig ist.

Bezug
                        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Fr 14.09.2012
Autor: leduart

Hallo kevin
Der Hinweis löst doch das Integral ? du musst nur sehen, was a ist!
Gruss leduart

Bezug
                                
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 Fr 14.09.2012
Autor: Norton

Ist a = 1 ?

Bezug
                                        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Fr 14.09.2012
Autor: fred97

Bingo !

FRED

Bezug
                        
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Fr 14.09.2012
Autor: Norton

Ist das dann mein Integral?

[mm] \wurzel{(t^2 +1^2)^3} [/mm]

Und jetzt die grenzen einsetzen?

Bezug
                                
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Fr 14.09.2012
Autor: MathePower

Hallo Noton,

> Ist das dann mein Integral?
>  
> [mm]\wurzel{(t^2 +1^2)^3}[/mm]
>  


Ja.


> Und jetzt die grenzen einsetzen?


Genau.


Gruss
MathePower

Bezug
                                        
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 Fr 14.09.2012
Autor: Norton

Wäre das ergebnis dann jetzt:

[mm] \wurzel{125} [/mm] - [mm] \wurzel{8} [/mm] ?

Bezug
                                                
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Fr 14.09.2012
Autor: MathePower

Hallo Norton,

> Wäre das ergebnis dann jetzt:
>  
> [mm]\wurzel{125}[/mm] - [mm]\wurzel{8}[/mm] ?


Ja. [ok]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]