Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Man hat ein zylindrisches Gefäß, dass bis h mit Wasser gefüllt ist,
Am Boden des Gefäßes befindet sich eine kleine Öffnung.
Das Gefäß hat einen Durchmesser von 5m und ist 3m hoch mit Wasser gefüllt, die Öffnung unten íst kreisförmig und besitzt den Durchmesser 2cm.
Das Fallhöhengesetz lauten. Wrz 2gh oder auch 44,3*Wrz h
Die aufgabe dazu ist: Wie lange dauert es, bis die Hälfte des Wassers (also bis 1,5m) aus dem Gefäß aus der Öffnung hinausgefloßen ist.
Hmm...also ich versteh die Aufgabe irgendwie nicht so ganz..hab schon bissl was versucht.
Ersma hab ich die Fläche des Bodens des Gefäßes errechnet:
Pi*r²= Pi * 2,5m² = 19,6m² = 1963cm²
Dann die Fläche der Öffnung:
Pi*r²= Pi*1²=Pi
Das Verhältnis daraus müsste ja wichtig sein, um die Menge des herausfließenden Wasser pro Zeit herauszufinden, also:
1963:Pi = 625
Nur weiß ich nun garnicht mehr weiter...würde mich wirklich sehr freuen wenn mir jemand weiterhelfen könnte und auch sagen könnte ob ich bis jetzt richtig vorgegangen bin. Wenn möglich bei den nächsten Schritten mit kurzer Erklärung, zum genaueren Verständis.
Vielen Dank im Vorraus!!!!
MfG
GuapoChico
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.uni-protokolle.de/foren/viewt/35529,0.html
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:07 Di 20.09.2005 | Autor: | Rohal |
Hallo erstmal,
Ich glaube du hast den richtigen Ansatz gewählt aber bei der Berechnung der Grundfläche hast du einen kleinen Umrechnungsfehler gemacht. 1 [mm] m^{2} [/mm] ist leider nicht 100 [mm] cm^{2} [/mm] sondern 10000 (ein [mm] m^{2} [/mm] hat eine Seitenlänge von 100 cm, Flächeninhalt ist also [mm] 100^{2}=10000
[/mm]
Daher beträgt die Grundfläche 196350 [mm] cm^{2}
[/mm]
Das Verhältnis ist nun natürlich : 62500 zu 1
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 20:19 Di 20.09.2005 | Autor: | GuapoChico |
Ok danke...aber weißt du zufällig wie es weiter geht?!? blick da nämlich garnicht mehr durch :(
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:58 Mi 21.09.2005 | Autor: | leduart |
Hallo
> Man hat ein zylindrisches Gefäß, dass bis h mit Wasser
> gefüllt ist,
> Am Boden des Gefäßes befindet sich eine kleine Öffnung.
> Das Gefäß hat einen Durchmesser von 5m und ist 3m hoch mit
> Wasser gefüllt, die Öffnung unten íst kreisförmig und
> besitzt den Durchmesser 2cm.
>
> Das Fallhöhengesetz lauten. Wrz 2gh oder auch 44,3*Wrz h
Das ist kein Gesetz sondern ein Ausdruck! das Gesetz ist [mm] v=\wurzel{2*g*h} [/mm] mit [mm] g=9.81m/s^{2}; [/mm] v Geschwindigkeit. Damit weisst du, wie schnell das Wasser im ersten Moment ausströmt, wenn du für h=3m einsetzt. damit kannst du bestimmen wieviel Wasser in 1s ausströmt, wenn du die Austritssöffnung von [mm] \pi cm^{2} [/mm] kennst.
Ausserdem weisst du dann, wieviel die Höhe in 1s weniger wird, du kannst die nächste s mit veränderter Höhe ausrechnen. Und dann sag uns, oder auch dir, was ihr grade im Unterricht macht, und man kann die Lösung ausrechnen.
Klar ist, dass die Höhe immer langsamer abnimmt, weil die Auslaufgeschw. immer kleiner wird. Ganz leer wird es also theoretisch nie. Und was du suchst ist ja nur die "Halbwertszeit" Überleg dir zuerst den Zusammenhang zwischen Höhe und Geschwindigkeit, daraus Zusammenhang Auslaufmenge/Zeit und Höhe. dann bist du fast fertig. Aber du willst doch sicher noch selber was denken. schreib, wie weit du gekommen bist, und wo du noch Hilfe brauchst. Aber Komplettlösg. liefern wir ungern!
> Die aufgabe dazu ist: Wie lange dauert es, bis die Hälfte
> des Wassers (also bis 1,5m) aus dem Gefäß aus der Öffnung
> hinausgefloßen ist.
>
> Hmm...also ich versteh die Aufgabe irgendwie nicht so
> ganz..hab schon bissl was versucht.
> Ersma hab ich die Fläche des Bodens des Gefäßes errechnet:
> Pi*r²= Pi * 2,5m² = 19,6m² = 1963cm²
> Dann die Fläche der Öffnung:
> Pi*r²= Pi*1²=Pi
>
> Das Verhältnis daraus müsste ja wichtig sein, um die Menge
> des herausfließenden Wasser pro Zeit herauszufinden, also:
> 1963:Pi = 625
Das ist wenig hilfreich! denn wenn der Boden größer wär, würd auch nicht mehr oder weniger auslaufen!
Ausserdem muss dich misstrauisch machen, dass du deine schöne Formel ja gar nicht brauchst!
Gruss leduart
|
|
|
|