www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegralsatz von Gauß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Integralsatz von Gauß
Integralsatz von Gauß < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralsatz von Gauß: Fehlersuche
Status: (Frage) beantwortet Status 
Datum: 20:04 So 20.10.2013
Autor: medphys

Aufgabe
Sei [mm] H={(x,y)|x^2+y^2\le 4, 0\le y} [/mm] und [mm] \vec{v} [/mm] das Vektorfeld [mm] \vec{v}=\vektor{2xy \\ x^2+y^2}. [/mm] Berechnen Sie [mm] \int_{H}^{} [/mm] div [mm] \vec{v}d(x,y) [/mm] sowohl direkt wie auch mit einem geeigneten Integralsatz.

Hallo zusammen,
ich finde bei der Rechnung einfach meinen Fehler nicht.
Zunächst erstmal die direkte Berechnung:
[mm] H'={(r,\varphi|0
[mm] x=r*cos(\varphi) [/mm] ; [mm] y=r*sin(\varphi) [/mm]

[mm] \int_{H}^{} [/mm] div [mm] \vec{v}d(x,y)= \int_{H}^{} [/mm] 4y d(x,y)
[mm] =\int_{H'}^{} 4r^2sin(\varphi)d(r,\varphi) [/mm]

[mm] =\int_{0}^{2}\int_{0}^{\pi}4r^2*sin(\varphi)d\varphi [/mm] dr= [mm] \int_{0}^{2}8r^2dr=\frac{64}{3}. [/mm]

Ich habe dann zur weiteren Berechnung den Integralsatz von Gauß verwendet und leider ein anderes Ergebnis rausbekommen.

[mm] \int_{M}^{} [/mm] div [mm] \vec{v} d(x,y)=\int_{\partialM}^{} \vec{v}\cdot\vec{n}ds [/mm]

[mm] \vec{n}=\frac{1}{2}\vektor{x \\ y} [/mm] die Kurve habe ich dann so parametrisiert [mm] \vec{c(t)}=2\cdot \vektor{cos(t) \\ sin(t)} [/mm] und damit [mm] |\vec{c_t(t)}|=2 [/mm] mit [mm] 0
[mm] \int_{\partial M}^{}[x^2y+\frac{1}{2}y(x^2+y^2)]d(x,y)= 2*\int_{0}^{\pi}[8cos^2(t)*sin(t)+4sin(t)]dt=8*\left[-\frac{2}{3}cos^3(t)-cos(t)\right]_{0}^{\pi}=8*\left[\frac{2}{3}+1-(-\frac{2}{3}-1)\right]=\frac{80}{3} [/mm]

Hoffe ihr könnt meinen Fehler finden.

Gruß
medphys

        
Bezug
Integralsatz von Gauß: Rand vervollständigen !
Status: (Antwort) fertig Status 
Datum: 20:26 So 20.10.2013
Autor: Al-Chwarizmi


> Sei [mm]H={(x,y)|x^2+y^2\le 4, 0\le y}[/mm] und [mm]\vec{v}[/mm] das
> Vektorfeld [mm]\vec{v}=\vektor{2xy \\ x^2+y^2}.[/mm] Berechnen Sie
> [mm]\int_{H}^{}[/mm] div [mm]\vec{v}d(x,y)[/mm] sowohl direkt wie auch mit
> einem geeigneten Integralsatz.
>  Hallo zusammen,
>  ich finde bei der Rechnung einfach meinen Fehler nicht.
>  Zunächst erstmal die direkte Berechnung:
>  [mm]H'={(r,\varphi|0
>  
> [mm]x=r*cos(\varphi)[/mm] ; [mm]y=r*sin(\varphi)[/mm]
>  
> [mm]\int_{H}^{}[/mm] div [mm]\vec{v}d(x,y)= \int_{H}^{}[/mm] 4y d(x,y)
>  [mm]=\int_{H'}^{} 4r^2sin(\varphi)d(r,\varphi)[/mm]
>  
> [mm]=\int_{0}^{2}\int_{0}^{\pi}4r^2*sin(\varphi)d\varphi[/mm] dr=
> [mm]\int_{0}^{2}8r^2dr=\frac{64}{3}.[/mm]
>  
> Ich habe dann zur weiteren Berechnung den Integralsatz von
> Gauß verwendet und leider ein anderes Ergebnis
> rausbekommen.
>  
> [mm]\int_{M}^{}[/mm] div [mm]\vec{v} d(x,y)=\int_{\partialM}^{} \vec{v}\cdot\vec{n}ds[/mm]
>  
> [mm]\vec{n}=\frac{1}{2}\vektor{x \\ y}[/mm] die Kurve habe ich dann
> so parametrisiert [mm]\vec{c(t)}=2\cdot \vektor{cos(t) \\ sin(t)}[/mm]
> und damit [mm]|\vec{c_t(t)}|=2[/mm] mit [mm]0
>
> [mm]\int_{\partial M}^{}[x^2y+\frac{1}{2}y(x^2+y^2)]d(x,y)= 2*\int_{0}^{\pi}[8cos^2(t)*sin(t)+4sin(t)]dt=8*\left[-\frac{2}{3}cos^3(t)-cos(t)\right]_{0}^{\pi}=8*\left[\frac{2}{3}+1-(-\frac{2}{3}-1)\right]=\frac{80}{3}[/mm]
>  
> Hoffe ihr könnt meinen Fehler finden.
>  
> Gruß
>  medphys


Hallo medphys,

(steht dies für "Medizin + Physik" ?  - interessante Kombination !)

ich habe jetzt gar nicht groß zu rechnen angefangen.
Aber ich sehe, dass du offenbar nur einen Teil der
Randkurve von H (den Halbkreisbogen) berücksichtigt
hast, aber nicht den Rest (den auf der x-Achse liegenden
Kreisurchmesser) !

Habe jetzt diesen Teil doch gerade noch berechnet,
und der daraus resultierende Beitrag scheint exakt
die Lücke zwischen deinen Ergebnissen zu füllen !

LG ,   Al-Chwarizmi


Bezug
                
Bezug
Integralsatz von Gauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 So 20.10.2013
Autor: medphys

Danke für die schnelle Antwort!
Genau dafür soll das medphys stehen.
Habe mal probiert die Strecke von -2 bis 2 zu parametrisieren, dabei kam raus:
[mm] \vec{c_2(t)}=\vektor{-2 \\ 0}+t \vektor{4 \\ 0} [/mm] mit 0<t<1.
Wenn ich das einsetze kommt dabei 0 raus, weil in jedem Produkt ein Faktor y auftaucht, der durch diese Parametrisierung immer 0 ist. Wo liegt diesmal der Fehler?
Gruß

Bezug
                        
Bezug
Integralsatz von Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 So 20.10.2013
Autor: Al-Chwarizmi


> Danke für die schnelle Antwort!
>  Genau dafür soll das medphys stehen.
>  Habe mal probiert die Strecke von -2 bis 2 zu
> parametrisieren, dabei kam raus:
>  [mm]\vec{c_2(t)}=\vektor{-2 \\ 0}+t \vektor{4 \\ 0}[/mm] mit
> 0<t<1.
>  Wenn ich das einsetze kommt dabei 0 raus, weil in jedem
> Produkt ein Faktor y auftaucht, der durch diese
> Parametrisierung immer 0 ist. Wo liegt diesmal der Fehler?
>  Gruß



Hallo medphys,

ich habe mir das entsprechende Integral so notiert:

    [mm] $\integral_{x=-2}^{+2}\,\vec{v}*\vec{n}\ [/mm] dx\ =\ [mm] \integral_{x=-2}^{+2}\,\pmat{2*x*y\\x^2+y^2}*\pmat{0\\-1}\ [/mm] dx$

      mit y=0 :

    $\ =\ [mm] \integral_{x=-2}^{+2}\,\pmat{0\\x^2}*\pmat{0\\-1}\ [/mm] dx\ =\ [mm] \integral_{x=-2}^{+2}\,(-\,x^2)\ [/mm] dx$

LG ,   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]