www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Integration
Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:35 Do 24.04.2014
Autor: Coxy

[mm] \integral_{0}^{2\pi}{\wurzel{(2*(-sin(x))*cos(x)^2)^2+(2*cos(x)*sin(x)^2)^2} dx} [/mm]
[mm] \integral_{0}^{2\pi}{\wurzel{4*(cos(x)^2*sin(x)^4+4*sin(x)^2*cos(x)^4} dx} [/mm]

Ich hab dann immer ausgeklammert und kam bis hier hin
[mm] \integral_{0}^{2\pi}{2*sin(x)^2\wurzel{cos(x)^2+1} dx} [/mm]

Wie kann ich weiter vereinfachen?

        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 23:49 Do 24.04.2014
Autor: Richie1401

Hallo Coxy,

>
> [mm]\integral_{0}^{2\pi}{\wurzel{(2*(-sin(x))*cos(x)^2)^2+(2*cos(x)*sin(x)^2)^2} dx}[/mm]
>  
> [mm]\integral_{0}^{2\pi}{\wurzel{4*(cos(x)^2*sin(x)^4+4*sin(x)^2*cos(x)^4} dx}[/mm]

Hier kannst du schon anders vereinfachen:

[mm] \wurzel{4\cdot{}cos(x)^2\cdot{}sin(x)^4+4\cdot{}sin(x)^2\cdot{}cos(x)^4}=\sqrt{4\sin^2x*\cos^2x(\sin^2x+\cos^2x)}=\sqrt{4\sin^2x*\cos^2x}=|2\cos{x}*\sin{x}| [/mm]

>  
> Ich hab dann immer ausgeklammert und kam bis hier hin
>  [mm]\integral_{0}^{2\pi}{2*sin(x)^2\wurzel{cos(x)^2+1} dx}[/mm]
>  
> Wie kann ich weiter vereinfachen?


Bezug
                
Bezug
Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:08 Fr 25.04.2014
Autor: Sax

Hi,

" $ [mm] \sqrt{4\sin^2x\cdot{}\cos^2x}=2\cos{x}\cdot{}\sin{x} [/mm] $ "
berücksichtigt die Vorzeichen nicht.

Besser : Additionstheorem anwenden.

Gruß Sax.

Bezug
                        
Bezug
Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:57 Fr 25.04.2014
Autor: Richie1401

Hallo Sax,

danke für deine Mitteilung. Du hast natürlich Recht. Ich habe die Betragsstriche hier unterschlagen, die natürlich notwendig sind.

Danke für deine EInwende - im obigen Beitrag habe ich es editiert.

Grüße!

Bezug
                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Fr 25.04.2014
Autor: Coxy

Hallo,
kann ich dich Fragen woher die Betragsstriche kommen?
Den Rest konnte ich nachvollziehen nur die Betragsstriche irritieren mich etwas.
Freundliche Grüße

Bezug
                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Fr 25.04.2014
Autor: Diophant

Hallo,

die Betragsstriche kommen schlicht und ergreifend von der Definition der Quadratwurzel, die du dir unbedingt nochmals zu Gemüte führen solltest. Quadratwurzeln sind demnach niemals negativ, dies macht hier die Betragsstriche für Bereiche, in denen der vereinfachte Term negativ wird, erforderlich.

Gruß, Diophant

Bezug
                                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Fr 25.04.2014
Autor: Coxy

Macht dies einen Unterschied wenn die Zahl nun intrigieren möchte?

Bezug
                                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Fr 25.04.2014
Autor: M.Rex


> Macht dies einen Unterschied
> wenn die Zahl nun intrigieren möchte?

Klar:

[mm]\int xdx=\frac{x^{2}}{2}[/mm]

Aber, da

[mm]|x|=\begin{cases} x, & \textrm{für } x\ge0\\ -x, & \textrm{für }x<0\end{cases}[/mm]

gilt, in mathematisch total unsauberer Notation:

[mm]\int|x|dx=\begin{cases} \int xdx, & \textrm{für } x\ge0\\ \int-x dx, & \textrm{für }x<0\end{cases}=\begin{cases} \frac{x^{2}}{2}, & \textrm{für } x\ge0\\ -\frac{x^{2}}{2}, & \textrm{für }x<0\end{cases}[/mm]



Noch interessanter wird es, wenn die Integratiosngrenzen in verschiedenen Bereichen des Betrages liegen.


Du musst also das Integral an jeder "Knickstelle" unterteilen

Marius

Bezug
                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Fr 25.04.2014
Autor: Coxy

[mm] \integral_{a}^{b}{\wurzel{1^2+((\bruch{1}{2})(e^x-e^{-x}))^2} dx} [/mm]
ergibt ja ausgeklammert folgendes
[mm] \integral_{a}^{b}{\wurzel{\bruch{1}{4}e^{2x}+\bruch{1}{4}e^{-2x}+0,5} dx} [/mm]

Wie könnte ich hier denn vereinfachen?

Bezug
                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Fr 25.04.2014
Autor: M.Rex

>
> [mm]\integral_{a}^{b}{\wurzel{1^2+((\bruch{1}{2})(e^x-e^{-x}))^2} dx}[/mm]

>

> ergibt ja ausgeklammert folgendes

>

> [mm]\integral_{a}^{b}{\wurzel{\bruch{1}{4}e^{2x}+\bruch{1}{4}e^{-2x}+0,5} dx}[/mm]

>

> Wie könnte ich hier denn vereinfachen?

Es gilt:

[mm] $\frac{1}{4}\cdot e^{2x}+\frac{1}{4}\cdot e^{-2x}+\frac{1}{2}$ [/mm]
[mm] $\frac{1}{4}\cdot e^{2x}+\frac{1}{2}+\frac{1}{4\cdot e^{2x}}$ [/mm]
[mm] $\frac{1}{4}\cdot (e^{x})^{2}+\frac{1}{2}+\frac{1}{4\cdot (e^{x})^{2}}$ [/mm]
[mm] $\frac{1}{4}\cdot \left((e^{x})^{2}+2+\frac{1}{(e^{x})^{2}}\right)$ [/mm]
[mm] $\frac{1}{4}\cdot \left(e^{x}+\frac{1}{e^{x}}\right)^{2}$ [/mm]
[mm] $\left(\frac{1}{2}\cdot \left(e^{x}+\frac{1}{e^{x}}\right)\right)^{2}$ [/mm]

Jetzt überlege mal, wie dir das weiterhilft.

Den Trick

[mm] \left(y-\frac{1}{y}\right)^{2}=y^{2}+2+\frac{1}{y^{2}} [/mm] solltest du dir merken, es ist eine häufige Anwendung der binomischen Formel.

Marius
 

Bezug
                                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 Fr 25.04.2014
Autor: Coxy

Danke das hat mir schon die Endlösung verraten ;)
Eine Frage habe ich aber -> Wie lernt man so den Überblick zu haben?
Gibt es vielleicht ein Lehrbuch für so etwas?

Bezug
                                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Fr 25.04.2014
Autor: M.Rex

Hallo

> Danke das hat mir schon die Endlösung verraten ;)
> Eine Frage habe ich aber -> Wie lernt man so den
> Überblick zu haben?

Übung, Erfahrung,

> Gibt es vielleicht ein Lehrbuch für so etwas?

Eine meiner Meinung nach sehr gute Seite für die Schulmathematik hat []F. Strobl zusammengestellt.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]