www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Integration
Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 So 08.07.2007
Autor: kiriS

Aufgabe
[mm] \integral_{\bruch{-\pi}{2a}}^{\bruch{\pi}{2a}}{lna \cdot cosax dx} [/mm]

Hallo Zusammen,

wie geh ich am besten vor, um das gegebene Integral zu lösen?? Muss ich da partiell integrieren?

Wäre für Tipps sehr dankbar.


Vielen lieben Dank im voraus

        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 So 08.07.2007
Autor: Stefan-auchLotti


> [mm]\integral_{\bruch{-\pi}{2a}}^{\bruch{\pi}{2a}}{lna \cdot cosax dx}[/mm]
>  
> Hallo Zusammen,

Hi!

>  
> wie geh ich am besten vor, um das gegebene Integral zu
> lösen?? Muss ich da partiell integrieren?
>  

Nein. [mm] $\ln [/mm] a$ stellt hier einen harmlosen konstanten Vorfaktor dar, was die Sache enorm vereinfacht. Die Stammfunktion von [mm] $\cos [/mm] x$ ist ... ? Stichwort, um das $a$ zu bekämpfen: Kehrwert.

> Wäre für Tipps sehr dankbar.
>  

Schau' einfach mal, ob das an Tipps genügt.

>
> Vielen lieben Dank im voraus

Grüße, Stefan.

Bezug
                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 So 08.07.2007
Autor: kiriS

Bilde ich dann einfach zu lna die Stammfunktion?

Also [mm] \bruch{1}{a} \cdot [/mm] lna ?

Die Stammfunktion von cosx ist sinx. Aber ich versteh das Vorgehen zu a nicht so ganz. Könntest du es bitte vielleicht näher erläutern.

Bezug
                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 So 08.07.2007
Autor: Stefan-auchLotti


> Bilde ich dann einfach zu lna die Stammfunktion?
>

Nein, das ist einfach eine Zahl. Du kennst ja vom Ableiten die Faktorregel [mm] $f(x)=c*g(x)\quad\Rightarrow\quad [/mm] f'(x)=c*g'(x)$ Daher kannst du einfach das [mm] $\ln [/mm] a$ völlig außer Acht lassen und vor das Integral ziehen:

[mm] $$\ln a*\int\cos\left(ax\right)\,\mathrm{d}x$$ [/mm]

Nun mal überlegen: [mm] $f(x)=\sin [/mm] x$, also [mm] $f'(x)=\cos [/mm] x$. Wenn [mm] $f(x)=\sin\left(ax\right)$ [/mm] ist, dann ist $f'(x)$ gemäß Kettenregel [mm] $=\cos\left(ax\right)*a$. [/mm] Hier stört uns also noch das hinzugekommene $a$. Daher einfach den Kehrwert [mm] $\bruch{1}{a}$ [/mm] noch einbauen und fertig ist die Geschichte. Kommst du jetzt klar?

> Also [mm]\bruch{1}{a} \cdot[/mm] lna ?
>  

Noch nebenbei: Die Stammfunktion von [mm] $\ln [/mm] x$ wäre [mm] $x*\ln [/mm] x-x$, das kann man via partieller Integration herleiten. Die Ableitung von [mm] $\ln [/mm] x$ ist übrigens [mm] $\bruch{1}{x}$, [/mm] dessen Stammfunktion aber wiederum [mm] $\ln\left|x\right|$. [/mm]

> Die Stammfunktion von cosx ist sinx. Aber ich versteh das
> Vorgehen zu a nicht so ganz. Könntest du es bitte
> vielleicht näher erläutern.

Stefan.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]