www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Integration
Integration < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Mi 12.12.2007
Autor: DaPhil

Aufgabe
Sei [mm] f(x,y)=\begin{cases} 1, & \mbox{für } 0 \le x \le y < x+1 \\ -1, & \mbox{für } 0 \le x,x+1 \le y < x+2 \\ 0,& \mbox{sonst} \end{cases} [/mm]

Berechne [mm] \integral_{\IR}{(\integral_{\IR} {f(x,y) dx})}dy [/mm]

Hallo,
also ich muss ohne die Integrationsreihenfolge zu vertauschen das Integral berechnen, um zu zeigen, dass bei Vertauschung nicht dasselbe herauskommt. Vertauscht man kommt 0 raus, das habe ich schon. Aber wenn ich wie oben angegeben zuerst über x integrieren soll, komme ich nicht weiter. Welche Grenzen muss ich da für x einsetzen? Wenn mir das jemand erklären könnte, vor allem warum es die Grenzen sind...
Danke

        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Mi 12.12.2007
Autor: rainerS

Hallo!

> Sei [mm]f(x,y)=\begin{cases} 1, & \mbox{für } 0 \le x \le y < x+1 \\ -1, & \mbox{für } 0 \le x,x+1 \le y < x+2 \\ 0,& \mbox{sonst} \end{cases}[/mm]
>  
> Berechne [mm]\integral_{\IR}{(\integral_{\IR} {f(x,y) dx})}dy[/mm]
>  
> Hallo,
> also ich muss ohne die Integrationsreihenfolge zu
> vertauschen das Integral berechnen, um zu zeigen, dass bei
> Vertauschung nicht dasselbe herauskommt. Vertauscht man
> kommt 0 raus, das habe ich schon. Aber wenn ich wie oben
> angegeben zuerst über x integrieren soll, komme ich nicht
> weiter. Welche Grenzen muss ich da für x einsetzen? Wenn
> mir das jemand erklären könnte, vor allem warum es die
> Grenzen sind...

Für das innere Integral hälst du y fest und lässt x über ganz [mm]\IR[/mm] laufen. Du musst dann die verschiedenen Bereiche unterscheiden, in denen f verschiedene Werte annimmt. Am besten, du malst dir ein Koordinatensystem für x und y auf, mit den Geraden y=x, y=x+1 und y=x+2.

Die Funktion ist 0 in der linken Halbebene ([mm]x<0[/mm]). Die Funktion ist 1 in der rechten Halbebene, zwischen den Geraden y=x und y=x+1. Sie ist -1 in der rechten Halbebene zwischen den Geraden y=x+1 und y=x+2. Oberhalb von y=x+2 und unterhalöb von y=x ist sie wieder 0.

Wenn du nun y festhälst, entspricht das einer waagrechten Geraden in deinem Diagramm. Für [mm]y<0[/mm] ist die Funktion immer 0, also auch dein inneres Integral. Für y>0 musst du anschauen, welche Werte die Funktion annimmt.
Am Besten ist es, wenn du die Fälle [mm]y<1[/mm], [mm]12[/mm] getrennt behandelst.

Ich zeige es am Beispiel y=3/2: Für [mm]0\le x \le 1/2[/mm] ist die Funktion -1, für [mm]1/2< x\le3/2[/mm] ist die Funktion +1. Also ist dein inneres Integral

[mm] \integral_0^{1/2} (-1) dx + \integral_{1/2}^{3/2} (+1) dx [/mm].

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]