www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenIntegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Integration
Integration < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:17 Mo 19.04.2010
Autor: ms2008de

Aufgabe
Sei eine Funktion f gegeben durch f(x)= ln(1 + [mm] e^{-x}). [/mm]
Der zugehörige Graph [mm] G_{f} [/mm] und die positiven Halbachsen des Koordinatensystems begrenzen eine sich ins Unendliche erstreckende Fläche F, von der untersucht werden soll, ob sie endlichen Inhalt besitzt.
a) Betrachten Sie zunächst jene Teilfläche von F, die zwischen den zu x=0 und x=ln n, n>1 und n [mm] \in \IN, [/mm] gehörende Ordinate liegt.
Welches Integral gibt den Inhalt [mm] J_{n} [/mm] dieser Teilfläche an?
Geben Sie für dieses Integral eine Obersumme [mm] S_{n} [/mm] an, indem Sie im Intervall [0; ln n] die Teilungspunkte ln 2, ln 3, ..., ln (n-1) einführen und die entsprechenden Flächeninhalte durch umbeschriebene Rechtecke ersetzen.

Hallo,
Also den 2. Teil mit der Obersumme hab ich hinbekommen, nur frag ich mich was denn mit "Welches Integral gibt den Inhalt [mm] J_{n} [/mm] dieser Teilfläche an?" gemeint ist?
Bei einer ehemaligen Abiaufgabe die immerhin mit 12 Punkten bewertet wurde, kann ich mir nicht vorstellen, dass hier Sinn und Zweck war zu antworten: [mm] J_{n}= \integral_{0}^{ln n}{f(x) dx}= \integral_{0}^{ln n}{ln (1+ e^{-x}) dx}, [/mm] oder was denkt Ihr?
Also falls man es ausrechnen sollte, würd ich mit partieller Integration anfangen: [mm] \integral_{0}^{ln n}{ln (1+ e^{-x}) dx}= [/mm] [x * ln(1+ [mm] e^{-x})]_{0}^{ln n} [/mm] + [mm] \integral_{0}^{ln n}{\bruch{x}{1+ e^x} dx} [/mm] und hier würd ich dann hängen...

Viele Grüße

        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Mo 19.04.2010
Autor: fred97


> Sei eine Funktion f gegeben durch f(x)= ln(1 + [mm]e^{-x}).[/mm]
>  Der zugehörige Graph [mm]G_{f}[/mm] und die positiven Halbachsen
> des Koordinatensystems begrenzen eine sich ins Unendliche
> erstreckende Fläche F, von der untersucht werden soll, ob
> sie endlichen Inhalt besitzt.
>  a) Betrachten Sie zunächst jene Teilfläche von F, die
> zwischen den zu x=0 und x=ln n, n>1 und n [mm]\in \IN,[/mm]
> gehörende Ordinate liegt.
> Welches Integral gibt den Inhalt [mm]J_{n}[/mm] dieser Teilfläche
> an?
>  Geben Sie für dieses Integral eine Obersumme [mm]S_{n}[/mm] an,
> indem Sie im Intervall [0; ln n] die Teilungspunkte ln 2,
> ln 3, ..., ln (n-1) einführen und die entsprechenden
> Flächeninhalte durch umbeschriebene Rechtecke ersetzen.
>  Hallo,
>  Also den 2. Teil mit der Obersumme hab ich hinbekommen,
> nur frag ich mich was denn mit "Welches Integral gibt den
> Inhalt [mm]J_{n}[/mm] dieser Teilfläche an?" gemeint ist?
>  Bei einer ehemaligen Abiaufgabe die immerhin mit 12
> Punkten bewertet wurde, kann ich mir nicht vorstellen, dass
> hier Sinn und Zweck war zu antworten: [mm]J_{n}= \integral_{0}^{ln n}{f(x) dx}= \integral_{0}^{ln n}{ln (1+ e^{-x}) dx},[/mm]
> oder was denkt Ihr?

genau das ist die Antwort !



>  Also falls man es ausrechnen sollte, würd ich mit
> partieller Integration anfangen: [mm]\integral_{0}^{ln n}{ln (1+ e^{-x}) dx}=[/mm]
> [x * ln(1+ [mm]e^{-x})]_{0}^{ln n}[/mm] + [mm]\integral_{0}^{ln n}{\bruch{x}{1+ e^x} dx}[/mm]


Du hast die Ableitung von ln (1+ [mm] e^{-x}) [/mm]  falsch ! Kettenregel.

FRED



> und hier würd ich dann hängen...
>  
> Viele Grüße


Bezug
                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Mo 19.04.2010
Autor: ms2008de


> > Sei eine Funktion f gegeben durch f(x)= ln(1 + [mm]e^{-x}).[/mm]
>  >  Der zugehörige Graph [mm]G_{f}[/mm] und die positiven
> Halbachsen
> > des Koordinatensystems begrenzen eine sich ins Unendliche
> > erstreckende Fläche F, von der untersucht werden soll, ob
> > sie endlichen Inhalt besitzt.
>  >  a) Betrachten Sie zunächst jene Teilfläche von F, die
> > zwischen den zu x=0 und x=ln n, n>1 und n [mm]\in \IN,[/mm]
> > gehörende Ordinate liegt.
> > Welches Integral gibt den Inhalt [mm]J_{n}[/mm] dieser Teilfläche
> > an?
>  >  Geben Sie für dieses Integral eine Obersumme [mm]S_{n}[/mm] an,
> > indem Sie im Intervall [0; ln n] die Teilungspunkte ln 2,
> > ln 3, ..., ln (n-1) einführen und die entsprechenden
> > Flächeninhalte durch umbeschriebene Rechtecke ersetzen.
>  >  Hallo,
>  >  Also den 2. Teil mit der Obersumme hab ich hinbekommen,
> > nur frag ich mich was denn mit "Welches Integral gibt den
> > Inhalt [mm]J_{n}[/mm] dieser Teilfläche an?" gemeint ist?
>  >  Bei einer ehemaligen Abiaufgabe die immerhin mit 12
> > Punkten bewertet wurde, kann ich mir nicht vorstellen, dass
> > hier Sinn und Zweck war zu antworten: [mm]J_{n}= \integral_{0}^{ln n}{f(x) dx}= \integral_{0}^{ln n}{ln (1+ e^{-x}) dx},[/mm]
> > oder was denkt Ihr?
>  
> genau das ist die Antwort !
>  
>
>
> >  Also falls man es ausrechnen sollte, würd ich mit

> > partieller Integration anfangen: [mm]\integral_{0}^{ln n}{ln (1+ e^{-x}) dx}=[/mm]
> > [x * ln(1+ [mm]e^{-x})]_{0}^{ln n}[/mm] + [mm]\integral_{0}^{ln n}{\bruch{x}{1+ e^x} dx}[/mm]
>
>
> Du hast die Ableitung von ln (1+ [mm]e^{-x})[/mm]  falsch !
> Kettenregel.

Wieso denn, die Ableitung von f(x)= ln [mm] (1+e^{-x}) [/mm] ist doch f´(x) = [mm] \bruch{-e^{-x}}{1+ e^{-x}} [/mm] = - [mm] \bruch{1}{1+ e^{x}}, [/mm] naja und Stammfunktion von 1 ist x, das eine Minus zieh ich vor das integral und dann stimmts doch...?

Bezug
                        
Bezug
Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:47 Mo 19.04.2010
Autor: fred97


> > > Sei eine Funktion f gegeben durch f(x)= ln(1 + [mm]e^{-x}).[/mm]
>  >  >  Der zugehörige Graph [mm]G_{f}[/mm] und die positiven
> > Halbachsen
> > > des Koordinatensystems begrenzen eine sich ins Unendliche
> > > erstreckende Fläche F, von der untersucht werden soll, ob
> > > sie endlichen Inhalt besitzt.
>  >  >  a) Betrachten Sie zunächst jene Teilfläche von F,
> die
> > > zwischen den zu x=0 und x=ln n, n>1 und n [mm]\in \IN,[/mm]
> > > gehörende Ordinate liegt.
> > > Welches Integral gibt den Inhalt [mm]J_{n}[/mm] dieser Teilfläche
> > > an?
>  >  >  Geben Sie für dieses Integral eine Obersumme [mm]S_{n}[/mm]
> an,
> > > indem Sie im Intervall [0; ln n] die Teilungspunkte ln 2,
> > > ln 3, ..., ln (n-1) einführen und die entsprechenden
> > > Flächeninhalte durch umbeschriebene Rechtecke ersetzen.
>  >  >  Hallo,
>  >  >  Also den 2. Teil mit der Obersumme hab ich
> hinbekommen,
> > > nur frag ich mich was denn mit "Welches Integral gibt den
> > > Inhalt [mm]J_{n}[/mm] dieser Teilfläche an?" gemeint ist?
>  >  >  Bei einer ehemaligen Abiaufgabe die immerhin mit 12
> > > Punkten bewertet wurde, kann ich mir nicht vorstellen, dass
> > > hier Sinn und Zweck war zu antworten: [mm]J_{n}= \integral_{0}^{ln n}{f(x) dx}= \integral_{0}^{ln n}{ln (1+ e^{-x}) dx},[/mm]
> > > oder was denkt Ihr?
>  >  
> > genau das ist die Antwort !
>  >  
> >
> >
> > >  Also falls man es ausrechnen sollte, würd ich mit

> > > partieller Integration anfangen: [mm]\integral_{0}^{ln n}{ln (1+ e^{-x}) dx}=[/mm]
> > > [x * ln(1+ [mm]e^{-x})]_{0}^{ln n}[/mm] + [mm]\integral_{0}^{ln n}{\bruch{x}{1+ e^x} dx}[/mm]
> >
> >
> > Du hast die Ableitung von ln (1+ [mm]e^{-x})[/mm]  falsch !
> > Kettenregel.
>  
> Wieso denn, die Ableitung von f(x)= ln [mm](1+e^{-x})[/mm] ist doch
> f´(x) = [mm]\bruch{-e^{-x}}{1+ e^{-x}}[/mm] = - [mm]\bruch{1}{1+ e^{x}},[/mm]


Pardon, Du hast recht. Ich hab nicht richtig hingesehen

FRED


> naja und Stammfunktion von 1 ist x, das eine Minus zieh ich
> vor das integral und dann stimmts doch...?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]