www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisIntegration
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Integration
Integration < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Frage
Status: (Frage) beantwortet Status 
Datum: 16:52 Do 30.06.2005
Autor: Pompeius

Hi leute !

ich hab mal wieder ein paar probleme bei diesen komischen algebra-sachen die ein integral ja meistens so mit sich bringt...  

f(x)= [mm] kx^2 [/mm] + 1      A = 4  

x= [mm] \wurzel{ \bruch{-1}{k}} [/mm]    <--- grenze ergibt sich durch 0 setzten


[mm] 2*\integral_{0}^{\wurzel{ \bruch{-1}{k}}} {(kx^2+1) dx}=2 [/mm]

F(x) = [mm] \bruch{1}{3}kx^3+x [/mm]

jetzt setzt ich die grenze ein :

1/3k* [mm] (-\bruch{1}{k})^3/2 [/mm] + (- [mm] \bruch{1}{k})^1/2 [/mm] =2

1/3(- [mm] \bruch{1}{k}^6/2) [/mm] + (- [mm] \bruch{1}{k})^1/2 [/mm] =2

1/6(- [mm] \bruch{1}{k}) [/mm] + (- [mm] \bruch{1}{k})= [/mm] 2

jetzt komm ich irgendwie nicht weiter...wär nett wenn mir jemand helfen könnte !!

danke schon mal

ich habe diese frage in keinem anderen forum gestellt






        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Do 30.06.2005
Autor: angela.h.b.


> Hi leute !
>  
> ich hab mal wieder ein paar probleme bei diesen komischen
> algebra-sachen die ein integral ja meistens so mit sich
> bringt...  
>
> f(x)= [mm]kx^2[/mm] + 1      A = 4  
>
> x= [mm]\wurzel{ \bruch{-1}{k}}[/mm]    <--- grenze ergibt sich durch
> 0 setzten

Hallo,

hier stellen wir mal sicherheitshalber fest, daß k<0 sein muß, ob man es später benötigt, weiß ich nicht.

>  
>
> [mm]2*\integral_{0}^{\wurzel{ \bruch{-1}{k}}} {(kx^2+1) dx}=2[/mm]

Hm. Ist das ein Schreibfehler, oder hast Du Dir was dabei gedacht? Oben stand A=4. Achso, das ist bestimmt nur schusselig, Du meinst sicher
[mm]\integral_{0}^{\wurzel{ \bruch{-1}{k}}} {(kx^2+1) dx}=2[/mm]


>  
> F(x) = [mm]\bruch{1}{3}kx^3+x[/mm]

Die Stammfunktion ist richtig.

>  
> jetzt setzt ich die grenze ein :
>  
> 1/3k* [mm](-\bruch{1}{k})^3/2[/mm] + (- [mm]\bruch{1}{k})^1/2[/mm] =2

Stimmt.
Aber im nächsten Schritt ist was schief gegangen.

Gucken wir uns mal  [mm](-\bruch{1}{k})^3/2[/mm]  an:
Es ist  [mm](-\bruch{1}{k})^3/2[/mm] = [mm]((-\bruch{1}{k})^3)^1/2[/mm] = [mm] (\bruch{1}{k^{2}}*(-\bruch{1}{k}))^{1/2} =\bruch{1}{k}(-\bruch{1}{k})^{1/2} [/mm]

Ich könnte mir vorstellen, daß Du so schon weiterkommst.
Gruß v. Angela

Bezug
        
Bezug
Integration: Erklärung
Status: (Antwort) fertig Status 
Datum: 19:15 Do 30.06.2005
Autor: informix

Hallo Pompeius,

>  
> ich hab mal wieder ein paar probleme bei diesen komischen
> algebra-sachen die ein integral ja meistens so mit sich
> bringt...  
>
> f(x)= [mm]kx^2[/mm] + 1      A = 4  
>
> x= [mm]\wurzel{ \bruch{-1}{k}}[/mm]    <--- grenze ergibt sich durch
> 0 setzten
>  
>
> [mm]2*\integral_{0}^{\wurzel{ \bruch{-1}{k}}} {(kx^2+1) dx}=2[/mm]
>  
> F(x) = [mm]\bruch{1}{3}kx^3+x[/mm]
>  
> jetzt setzt ich die grenze ein :
>  
> 1/3k* [mm](-\bruch{1}{k})^3/2[/mm] + (- [mm]\bruch{1}{k})^1/2[/mm] =2

schau dir mal unseren Formeleditor genauer an, damit man deine Formeln besser lesen kann:

[mm] $\bruch{1}{3}k*(\wurzel{-\bruch{1}{k}})^3 [/mm] + [mm] \wurzel{\bruch{-1}{k}} [/mm] = 4$
bei längeren Formeln genügt ein '$' oder '[ mm]' jeweils vorn und hinten; klick mal auf meine Formel!

> 1/3(- [mm]\bruch{1}{k}^6/2)[/mm] + (- [mm]\bruch{1}{k})^1/2[/mm] =2

hier verhedderst du dich in deiner Schreibweise!
[mm] $\bruch{1}{3}(\bruch{-1}{k})^{\red{6/2}}+ (\bruch{-1}{k})^{1/2}[/mm] [/mm] =2$
die 6 ist falsch!

[mm] $-\bruch{1}{3} \wurzel{\bruch{-1}{k}} [/mm] + [mm] \wurzel{\bruch{-1}{k}} [/mm] = 4$
Jetzt solltest du es wirklilch allein lösen können.
Mein Ergebnis: $k = - [mm] \bruch{1}{36}$ [/mm] - nachrechnen!!

>  
> 1/6(- [mm]\bruch{1}{k})[/mm] + (- [mm]\bruch{1}{k})=[/mm] 2
>  
> jetzt komm ich irgendwie nicht weiter...wär nett wenn mir
> jemand helfen könnte !!
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]