www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Integration
Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:51 Sa 04.02.2012
Autor: mbau16

Aufgabe
Berechnen sie folgenden Ausdruck:

[mm] \integral_{0}^{\bruch{\pi}{6}}cos(2t)*(e^{-t})^{2}*dt [/mm]

Guten Morgen,

folgende partielle Integration bereitet mir Kopfschmerzen.

[mm] \integral_{0}^{\bruch{\pi}{6}}cos(2t)*(e^{-t})^{2}*dt [/mm]

1.Partielle Integration (unbestimmt)

[mm] \integral uv'=uv-\integral [/mm] u'v dt

[mm] u=(e^{-t})^{2}=e^{-2t} [/mm]

[mm] u'=-2e^{-2t} [/mm]

v'=cos(2t)

[mm] v=\bruch{1}{2}sin(2t) [/mm]

[mm] I=e^{-2t}*\bruch{1}{2}sin(2t)-\integral -2e^{-2t}*\bruch{1}{2}sin(2t) [/mm] dt

(Kurze Zwischenfrage- Muss ich hier jeden Ausdruck eigentlich einklammern?)

[mm] I=e^{-2t}*\bruch{1}{2}sin(2t)+\integral e^{-2t}*sin(2t) [/mm] dt

2.Partielle Integration (unbestimmt)

[mm] u=e^{-2t} [/mm]

[mm] u'=-2e^{-2t} [/mm]

v'=sin(2t)

[mm] v=-\bruch{1}{2}cos(2t) [/mm]

[mm] I=e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)-\integral -2e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right) [/mm] dt

[mm] I=e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)+\underbrace{\integral e^{-2t}*\left(cos(2t)\right) dt}_{=I} [/mm]

[mm] I=e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)+I [/mm]

Somit habe ich wieder mein Ausgangsintegral! Bis hier müsste es richtig sein.

Möchte jetzt gerne den sog. Rückwurf durchführen. D.h., dass I auf die andere Seite zu bringen. Das Problem ist nur, dass mein I auf der rechten Seite ein positives Vorzeichen hat. Wenn ich es jetzt nach links ziehe ergibt es 0. Wie mache ich das jetzt? Wo ist mein Fehler?

Vielen Dank

Gruß

mbau16



        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 12:07 Sa 04.02.2012
Autor: leduart

Hallo
erst in der vorletzten Zeile hast du nen Vorzeichenfehler

> Berechnen sie folgenden Ausdruck:
>  
> [mm]\integral_{0}^{\bruch{\pi}{6}}cos(2t)*(e^{-t})^{2}*dt[/mm]
>  Guten Morgen,
>
> folgende partielle Integration bereitet mir Kopfschmerzen.
>
> [mm]\integral_{0}^{\bruch{\pi}{6}}cos(2t)*(e^{-t})^{2}*dt[/mm]
>  
> 1.Partielle Integration (unbestimmt)
>  
> [mm]\integral uv'=uv-\integral[/mm] u'v dt
>  
> [mm]u=(e^{-t})^{2}=e^{-2t}[/mm]
>  
> [mm]u'=-2e^{-2t}[/mm]
>  
> v'=cos(2t)
>  
> [mm]v=\bruch{1}{2}sin(2t)[/mm]
>  
> [mm]I=e^{-2t}*\bruch{1}{2}sin(2t)-\integral -2e^{-2t}*\bruch{1}{2}sin(2t)[/mm]
> dt
>  
> (Kurze Zwischenfrage- Muss ich hier jeden Ausdruck
> eigentlich einklammern?)
>  
> [mm]I=e^{-2t}*\bruch{1}{2}sin(2t)+\integral e^{-2t}*sin(2t)[/mm] dt
>  
> 2.Partielle Integration (unbestimmt)
>  
> [mm]u=e^{-2t}[/mm]
>  
> [mm]u'=-2e^{-2t}[/mm]
>  
> v'=sin(2t)
>  
> [mm]v=-\bruch{1}{2}cos(2t)[/mm]
>  
> [mm]I=e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)-\integral -2e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)[/mm]
> dt

bis hier richtig, die Minus unter dem Integral ergeben +, das Minus vor dem Integral bleibt stehen!

> [mm]I=e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)+\underbrace{\integral e^{-2t}*\left(cos(2t)\right) dt}_{=I}[/mm]

diese Zeile falsch,ausserdem hast du von der ersten Integration das [mm] e^{-2t}*\bruch{1}{2}sin(2t) [/mm]
Gruss leduart


Bezug
                
Bezug
Integration: an leduart
Status: (Frage) beantwortet Status 
Datum: 12:11 Sa 04.02.2012
Autor: mbau16


> Hallo
>  erst in der vorletzten Zeile hast du nen Vorzeichenfehler
>  > Berechnen sie folgenden Ausdruck:

>  >  
> > [mm]\integral_{0}^{\bruch{\pi}{6}}cos(2t)*(e^{-t})^{2}*dt[/mm]
>  >  Guten Morgen,
> >
> > folgende partielle Integration bereitet mir Kopfschmerzen.
> >
> > [mm]\integral_{0}^{\bruch{\pi}{6}}cos(2t)*(e^{-t})^{2}*dt[/mm]
>  >  
> > 1.Partielle Integration (unbestimmt)
>  >  
> > [mm]\integral uv'=uv-\integral[/mm] u'v dt
>  >  
> > [mm]u=(e^{-t})^{2}=e^{-2t}[/mm]
>  >  
> > [mm]u'=-2e^{-2t}[/mm]
>  >  
> > v'=cos(2t)
>  >  
> > [mm]v=\bruch{1}{2}sin(2t)[/mm]
>  >  
> > [mm]I=e^{-2t}*\bruch{1}{2}sin(2t)-\integral -2e^{-2t}*\bruch{1}{2}sin(2t)[/mm]
> > dt
>  >  
> > (Kurze Zwischenfrage- Muss ich hier jeden Ausdruck
> > eigentlich einklammern?)
>  >  
> > [mm]I=e^{-2t}*\bruch{1}{2}sin(2t)+\integral e^{-2t}*sin(2t)[/mm] dt
>  >  
> > 2.Partielle Integration (unbestimmt)
>  >  
> > [mm]u=e^{-2t}[/mm]
>  >  
> > [mm]u'=-2e^{-2t}[/mm]
>  >  
> > v'=sin(2t)
>  >  
> > [mm]v=-\bruch{1}{2}cos(2t)[/mm]
>  >  
> > [mm]I=e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)-\integral -2e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)[/mm]
> > dt
>  bis hier richtig, die Minus unter dem Integral ergeben +,
> das Minus vor dem Integral bleibt stehen!
> >
> [mm]I=e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)+\underbrace{\integral e^{-2t}*\left(cos(2t)\right) dt}_{=I}[/mm]
>  
> diese Zeile falsch,ausserdem hast du von der ersten
> Integration das [mm]e^{-2t}*\bruch{1}{2}sin(2t)[/mm]

Danke für die schnelle Antwort, blöder Fehler! Deinen letzten Satz vestehe ich nicht! Ist er vollständig?

Gruß

mbau16

>  


Bezug
                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Sa 04.02.2012
Autor: angela.h.b.

Hallo,

mit der ersten partiellen Integration hast Du

> > > [mm]\integral_{0}^{\bruch{\pi}{6}}cos(2t)*(e^{-t})^{2}*dt[/mm] [mm]=e^{-2t}*\bruch{1}{2}sin(2t)+\integral e^{-2t}*sin(2t)[/mm] dt

Die partielle Integration von [mm] \integral e^{-2t}*sin(2t)dt [/mm] ergibt

[mm]\integral e^{-2t}*sin(2t) dt =e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)\red{-}\integral 2e^{-2t}*\left(\bruch{1}{2}cos(2t)\right)[/mm]

Du hast nun also

[mm]\green{\integral_{0}^{\bruch{\pi}{6}}cos(2t)*(e^{-t})^{2}*dt}[/mm] =[mm]e^{-2t}*\bruch{1}{2}sin(2t)+e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)\red{-}\green{\integral e^{-2t}*cos(2t)dt}[/mm].

Wenn Du weißt, wie Du x=5-x löst, kannst Du auch das Integral berechnen...

LG Angela

Bezug
                                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Sa 04.02.2012
Autor: mbau16


> Hallo,
>  
> mit der ersten partiellen Integration hast Du
>  > > >

> [mm]\integral_{0}^{\bruch{\pi}{6}}cos(2t)*(e^{-t})^{2}*dt[/mm]
> [mm]=e^{-2t}*\bruch{1}{2}sin(2t)+\integral e^{-2t}*sin(2t)[/mm] dt
>  
> Die partielle Integration von [mm]\integral e^{-2t}*sin(2t)dt[/mm]
> ergibt
>  
> [mm]\integral e^{-2t}*sin(2t) dt =e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)\red{-}\integral 2e^{-2t}*\left(\bruch{1}{2}cos(2t)\right)[/mm]
>
> Du hast nun also
>
> [mm]\green{\integral_{0}^{\bruch{\pi}{6}}cos(2t)*(e^{-t})^{2}*dt}[/mm]
> =[mm]e^{-2t}*\bruch{1}{2}sin(2t)+e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)\red{-}\green{\integral e^{-2t}*cos(2t)dt}[/mm].
>  
> Wenn Du weißt, wie Du x=5-x löst, kannst Du auch das
> Integral berechnen...

Ok-Ist es ab hier mathematisch bis zum Schluss richtig????

[mm] I=e^{-2t}*\bruch{1}{2}sin(2t)+e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)-\underbrace{\integral e^{-2t}*\bruch{1}{2}cos(2t)dt}_{=I} [/mm]

[mm] I=e^{-2t}*\bruch{1}{2}sin(2t)+e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)-I [/mm]

[mm] 2I=e^{-2t}*\bruch{1}{2}sin(2t)+e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right) [/mm]

[mm] I=\bruch{1}{2}*e^{-2t}*\bruch{1}{4}sin(2t)+\bruch{1}{2}*e^{-2t}*\left(-\bruch{1}{4}cos(2t)\right) [/mm]

[mm] I=e^{-2t}*\bruch{1}{4}sin(2t)*\left(-\bruch{1}{4}cos(2t)\right) [/mm]

[mm] I=e^{-2t}*\bruch{1}{4}*(sin(2t)-cos(2t)) [/mm]

Vielen Dank

Gruß

mbau16


Bezug
                                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Sa 04.02.2012
Autor: MathePower

Hallo mbau16,


> > Hallo,
>  >  
> > mit der ersten partiellen Integration hast Du
>  >  > > >

> > [mm]\integral_{0}^{\bruch{\pi}{6}}cos(2t)*(e^{-t})^{2}*dt[/mm]
> > [mm]=e^{-2t}*\bruch{1}{2}sin(2t)+\integral e^{-2t}*sin(2t)[/mm] dt
>  >  
> > Die partielle Integration von [mm]\integral e^{-2t}*sin(2t)dt[/mm]
> > ergibt
>  >  
> > [mm]\integral e^{-2t}*sin(2t) dt =e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)\red{-}\integral 2e^{-2t}*\left(\bruch{1}{2}cos(2t)\right)[/mm]
> >
> > Du hast nun also
> >
> >
> [mm]\green{\integral_{0}^{\bruch{\pi}{6}}cos(2t)*(e^{-t})^{2}*dt}[/mm]
> >
> =[mm]e^{-2t}*\bruch{1}{2}sin(2t)+e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)\red{-}\green{\integral e^{-2t}*cos(2t)dt}[/mm].
>  
> >  

> > Wenn Du weißt, wie Du x=5-x löst, kannst Du auch das
> > Integral berechnen...
>  
> Ok-Ist es ab hier mathematisch bis zum Schluss richtig????
>  
> [mm]I=e^{-2t}*\bruch{1}{2}sin(2t)+e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)-\underbrace{\integral e^{-2t}*\bruch{1}{2}cos(2t)dt}_{=I}[/mm]
>  
> [mm]I=e^{-2t}*\bruch{1}{2}sin(2t)+e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)-I[/mm]
>  
> [mm]2I=e^{-2t}*\bruch{1}{2}sin(2t)+e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)[/mm]
>  
> [mm]I=\bruch{1}{2}*e^{-2t}*\bruch{1}{4}sin(2t)+\bruch{1}{2}*e^{-2t}*\left(-\bruch{1}{4}cos(2t)\right)[/mm]
>  
> [mm]I=e^{-2t}*\bruch{1}{4}sin(2t)*\left(-\bruch{1}{4}cos(2t)\right)[/mm]
>  
> [mm]I=e^{-2t}*\bruch{1}{4}*(sin(2t)-cos(2t))[/mm]

>


Stimmt. [ok]

  

> Vielen Dank
>  
> Gruß
>  
> mbau16
>  


Gruss
MathePower

Bezug
                                                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Sa 04.02.2012
Autor: mbau16

Guten Abend nochmal,

habe noch eine Frage. Diese steht ganz unten.

>  
>
> > > Hallo,
>  >  >  
> > > mit der ersten partiellen Integration hast Du
>  >  >  > > >

> > > [mm]\integral_{0}^{\bruch{\pi}{6}}cos(2t)*(e^{-t})^{2}*dt[/mm]
> > > [mm]=e^{-2t}*\bruch{1}{2}sin(2t)+\integral e^{-2t}*sin(2t)[/mm] dt
>  >  >  
> > > Die partielle Integration von [mm]\integral e^{-2t}*sin(2t)dt[/mm]
> > > ergibt
>  >  >  
> > > [mm]\integral e^{-2t}*sin(2t) dt =e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)\red{-}\integral 2e^{-2t}*\left(\bruch{1}{2}cos(2t)\right)[/mm]
> > >
> > > Du hast nun also
> > >
> > >
> >
> [mm]\green{\integral_{0}^{\bruch{\pi}{6}}cos(2t)*(e^{-t})^{2}*dt}[/mm]
> > >
> >
> =[mm]e^{-2t}*\bruch{1}{2}sin(2t)+e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)\red{-}\green{\integral e^{-2t}*cos(2t)dt}[/mm].
>  
> >  

> > >  

> > > Wenn Du weißt, wie Du x=5-x löst, kannst Du auch das
> > > Integral berechnen...
>  >  
> > Ok-Ist es ab hier mathematisch bis zum Schluss richtig????
>  >  
> >
> [mm]I=e^{-2t}*\bruch{1}{2}sin(2t)+e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)-\underbrace{\integral e^{-2t}*\bruch{1}{2}cos(2t)dt}_{=I}[/mm]
>  
> >  

> >
> [mm]I=e^{-2t}*\bruch{1}{2}sin(2t)+e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)-I[/mm]
>  >  
> >
> [mm]2I=e^{-2t}*\bruch{1}{2}sin(2t)+e^{-2t}*\left(-\bruch{1}{2}cos(2t)\right)[/mm]
>  >  
> >
> [mm]I=\bruch{1}{2}*e^{-2t}*\bruch{1}{4}sin(2t)+\bruch{1}{2}*e^{-2t}*\left(-\bruch{1}{4}cos(2t)\right)[/mm]
>  >  
> >
> [mm]I=e^{-2t}*\bruch{1}{4}sin(2t)*\left(-\bruch{1}{4}cos(2t)\right)[/mm]
>  >  
> > [mm]I=e^{-2t}*\bruch{1}{4}*(sin(2t)-cos(2t))[/mm]
>  >
>  
>
> Stimmt. [ok]

Super, danke für die schnelle Antwort. Habe nun zum guten Schluß die Aufgabe, die obere Grenze von unteren abzuziehen.

[mm] I=I_{1}-I_{2} [/mm]

Obere Grenze

(Zur Erinnerung, diese ist [mm] \bruch{\pi}{6}) [/mm]

[mm] I_{1}=e^{-\bruch{\pi}{3}}*\bruch{1}{4}\left(sin\left(\bruch{\pi}{3}\right)-cos\left(\bruch{\pi}{3}\right)\right) [/mm]

[mm] I_{1}=e^{-\bruch{\pi}{3}}*\bruch{1}{4}\left(\bruch{\wurzel{3}}{2}-\bruch{1}{2}\right) [/mm]

Wie verfahre ich mit dem [mm] e^{-\bruch{\pi}{3}}?? [/mm] Kann ich das noch weiter vereinfachen?

Untere Grenze:

Könnt Ihr hier bitte auch nochmal ein Blick drauf werfen? Ist es richtig?

(Zur Erinnerung, diese war 0)

[mm] I_{2}=1*\bruch{1}{4}(sin(0)-cos(0)) [/mm]

[mm] I_{2}=-\bruch{1}{4} [/mm]

Vielen Dank

Gruß

mbau16  

>


Bezug
                                                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Sa 04.02.2012
Autor: leduart

Hallo
richtig, und $ [mm] e^{-\bruch{\pi}{3}} [/mm] $kann man nicht vereinfachen.
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]