www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegration, Stammfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Integration, Stammfunktion
Integration, Stammfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration, Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:57 Fr 13.10.2006
Autor: drummy

Aufgabe
[mm] f(x)=\bruch{(e*ln(x))^2}{x}; x\in \IR [/mm] mit x>0
Berechnen Sie den Inhalt A(u) der Fläche, die von  dem Graphen K, der x-Achse und der Geraden x=u mit 0<u<1 eingeschlossen wird. Wie ist u für [mm] A(u)=\bruch{1}{3}*e^2 [/mm] zu wählen?
TP(1|0)

Hallo! Wenn ich [mm] \integral_{u}^{1}{f(x)dx}=\bruch{1}{3}*e^2 [/mm] bilde müsste ich u erhalten?! Leider bekomme ich die Stammfunktion nicht hin, wäre nett wenn ihr mir dabei helfen könntet. Danke im Voraus, Gruß drummy

        
Bezug
Integration, Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 Fr 13.10.2006
Autor: ardik

Hallo drummy,

> Wenn ich [mm]\integral_{u}^{1}{f(x)dx}=\bruch{1}{3}*e^2[/mm]
> bilde müsste ich u erhalten?!

Ja.

Für die Stammfunktion würde ich mit [mm] $z=\ln{x}$ [/mm] substituieren und erhalte dann [mm] $\integral{e^2*z^2}dz$ [/mm]  wenn ich jetzt keinen Denkfehler mache.
Auch eine Trickreiche Anwendung der Produktintegration könnte zum Ziel führen, das will ich später am Abend man durchdenken.

Schöne Grüße,
ardik

Bezug
                
Bezug
Integration, Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 Sa 14.10.2006
Autor: drummy

Kannst du mir vielleicht nochmal bei der verwendeten Stammfunktion helfen? Ich komme nämlich nicht auf das genannte Ergebnis durch Substitution.

Bezug
                        
Bezug
Integration, Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Sa 14.10.2006
Autor: ardik

Hallo drummy,

voilà:

[mm] $\integral{\bruch{(e*\ln(x))^2}{x}dx}=\integral{e^2*(\ln x)^2*\bruch{1}{x}\ dx}$ [/mm]

[mm]z=\ln x [/mm]

[mm]\bruch {dz}{dx}=\bruch{1}{x} [/mm]

[mm]dx=x dz[/mm]


[mm] ...$=\integral{e^2*z^2*\bruch{1}{x}*x \ dz} [/mm] = [mm] \integral{e^2z^2dz}$ [/mm]

Ich schätze, das reicht?

Schöne Grüße,
ardik

Bezug
                                
Bezug
Integration, Stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:42 Sa 14.10.2006
Autor: drummy

Jo danke, hab ich verstanden! Liebe Grüße

Bezug
        
Bezug
Integration, Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Fr 13.10.2006
Autor: SLe

Die Stammfunktion ist: [mm] \bruch{1}{3}e²(lnx)³ [/mm]
Äussere Ableitung ergibt: e²*(lnx)²,
innere Ableitung: [mm] \bruch{1}{x} [/mm]
Ergibt also wieder genau dein f(x)

Bezug
                
Bezug
Integration, Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Sa 14.10.2006
Autor: drummy

Ich habe mit deiner Antwort versucht u auszurechnen, komme aber auf u>1, was aber falsch ist.
[mm] \integral_{u}^{1} {\bruch{(e*ln(x))^2}{x} dx}=\bruch{1}{3}e^2 [/mm]
[mm] [\bruch{1}{3}e^2(ln(x))^3], [/mm] u,1= [mm] \bruch{1}{3}e^2 [/mm]
[mm] 0-(\bruch{1}{3}e^2(ln(u)^3)=\bruch{1}{3}e^2 |/\bruch{1}{3}e^2 [/mm]
[mm] -u^3=\wurzel[3]{e} \to [/mm] u= -1,38...
Kannst du mir deine Vorgehensweise vielleicht nochmal genauer erklären? Danke im Voraus

Bezug
                        
Bezug
Integration, Stammfunktion: Rechenfehler
Status: (Antwort) fertig Status 
Datum: 16:18 Sa 14.10.2006
Autor: Loddar

Hallo drummy!


Du machst beim Umformen einen Fehler (die Stammfunktion hast Du richtig ermittelt):


>  [mm]0-(\bruch{1}{3}e^2(ln(u)^3)=\bruch{1}{3}e^2 |/\bruch{1}{3}e^2[/mm]

Hieraus erhält man:

[mm] $-\ln^3(u) [/mm] \ = \ [mm] \red{1}$ [/mm]

[mm] $\ln^3(u) [/mm] \ = \ -1$


Kommst Du nun alleine weiter?


Gruß
Loddar


Bezug
                                
Bezug
Integration, Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 Sa 14.10.2006
Autor: drummy

Hallo loddar,

wie kann ich denn diesen Term jetzt lösen?
speziell [mm] ln^3(u)=-1? [/mm]




Bezug
                                        
Bezug
Integration, Stammfunktion: weitere Schritte
Status: (Antwort) fertig Status 
Datum: 17:22 Sa 14.10.2006
Autor: Loddar

Hallo drummy!


Ziehe auf beiden Seiten die 3. Wurzel und wende anschließend die Umkehrfunktion der [mm] $\ln$-Funktion [/mm] an.


Gruß
Loddar


Bezug
                                                
Bezug
Integration, Stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Sa 14.10.2006
Autor: drummy

Alles klar! ICh habe jetzt für u ungefähr 0,3678 raus.

Schönen Dank!

Bezug
                                                        
Bezug
Integration, Stammfunktion: Genau!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:32 Sa 14.10.2006
Autor: Loddar

Hallo drummy!


Stimmt so. [ok]

Genauer ist es aber mit $u \ = \ [mm] e^{-1} [/mm] \ = \ [mm] \bruch{1}{e}$ [/mm] .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]