www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegration durch Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Integration durch Substitution
Integration durch Substitution < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:43 Sa 04.11.2006
Autor: TRANSLTR

Aufgabe
a) [mm] (3x-5)^{6} [/mm]
b) [mm] \bruch{5}{3u-4} [/mm]

Wie genau löst man Integralaufgaben mit der Substitution? Ich habe mir schon auf ein paar Seiten das Prinzip angeschaut, verstehe es aber trotzdem nicht ganz.
Bei Aufgabe a bin ich so vorgegangen:
[mm] (3x-5)^{6} [/mm]
->3x-5 substituiert durch y->
[mm] y^{6} [/mm]
->integrieren->
[mm] \bruch{y^{7}}{7} [/mm]
->y wieder zurückersetzen->
[mm] \bruch{(3x-5)^{7}}{7} [/mm]
Die Lösung lautet aber:
[mm] \bruch{1}{21}*(3x-5)^{7} [/mm]

Aufgabe b:
[mm] \bruch{5}{3u-4} [/mm]
->y = 3u-4->
[mm] \bruch{5}{y} [/mm]
->integrieren->
5 * ln(y)
->y wieder einsetzen->
5 * ln|3u-4|
Die Lösung aber lautet:
[mm] \bruch{5}{3}*ln|3u-4| [/mm]

Was mache ich falsch und wie genau sollte man vorgehen?





        
Bezug
Integration durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 00:07 So 05.11.2006
Autor: Gonozal_IX

Hi Transl,

du machst eigentlich alles richtig, vergisst nur die Hälfte ;-)

[mm]\integral{(3x-5)^6 dx}[/mm]

[mm]y = 3x-5 [/mm]
[mm]\Rightarrow dy = (3x-5)' dx = 3dx[/mm]
[mm]dx = \bruch{1}{3}dy[/mm]

Jetzt ersetzen:

[mm]\integral{y^6 dx}[/mm]

Aber da du nun nicht mehr nach x integrieren willst, sondern nach y, musst du das dx auch ersetzen und es gilt ja [mm]dx = \bruch{1}{3}dy[/mm]

[mm]\integral{y^6 \bruch{1}{3}dy} = \bruch{1}{3}\integral{y^6 dy}[/mm]

[mm]= \bruch{1}{3}\bruch{y^7}{7}[/mm]

[mm]=\bruch{(3x-5)^7}{21}[/mm]

Die b) schaffst nu alleine, wenn net, einfach nochmal nachfragen :-)

Gruß,
Gono.


Bezug
                
Bezug
Integration durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:21 So 05.11.2006
Autor: TRANSLTR

Hey...danke vielmals für die Antwort.....
Aber ich verstehe trotzdem nicht ganz, was du gemacht hast.
Der erste Teil ist mir unklar.
y = 3x-5
Aber was ist gemeint mit
dy=(3x-5)'dx=3dy
[mm] dx=\bruch{1}{3}dy [/mm]

Ich verstehe die Schreibweisen dy und dx nicht.
Hast du jetzt 3x-5 integriert?
Das gäbe dann [mm] \bruch{3x^{2}}{2}-5x [/mm]
Oder has du differenziert?
Das gäbe aber 3.

Sorry..versteh's nicht :S

Bezug
                        
Bezug
Integration durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 01:41 So 05.11.2006
Autor: VNV_Tommy

Hall TRANSLTR!

> Hey...danke vielmals für die Antwort.....
>  Aber ich verstehe trotzdem nicht ganz, was du gemacht
> hast.
>  Der erste Teil ist mir unklar.
>  y = 3x-5
>  Aber was ist gemeint mit
>  dy=(3x-5)'dx=3dy
>  [mm]dx=\bruch{1}{3}dy[/mm]
>  
> Ich verstehe die Schreibweisen dy und dx nicht.
>  Hast du jetzt 3x-5 integriert?
>  Das gäbe dann [mm]\bruch{3x^{2}}{2}-5x[/mm]
>  Oder has du differenziert?
>  Das gäbe aber 3.
>  
> Sorry..versteh's nicht :S

Es gilt zu ermitteln:

[mm] \integral{(\red{3x-5})^{6} \blue{dx}} [/mm]

Wir substituieren: [mm]\red{y}=3x-5[/mm]

Bei der Integration mittels Substitution muss man, weil man die zu integrierende Funktion durch das Austauchen verändert, auch das Defferential ändern. Dies macht man, indem man die 'alte' Funktion ableitet, also f'(x) bildet. Da f'(x) nichts anderes ist als der Differentialquotient [mm] \bruch{dy}{dx} [/mm] kann man anstelle der Bezeichnung f'(x) auch [mm] \bruch{dy}{dx} [/mm] schreiben. Heißt deine Funktion y=f(x)=3x-5 dann ergibt sich die erste Ableitung, also f'(x) bzw. [mm] \bruch{dy}{dx} [/mm] , zu [mm] f'(x)=\bruch{dy}{dx}=3. [/mm]

Die Gleichung [mm] \bruch{dy}{dx}=3 [/mm] kannst du nun ganz normal, nach den Regeln der Äquivalenzumformung, nach dx (also nach deiner 'alten' Integrationsvariablen) umstellen. In deinem Fall erhielte man dabei [mm]dx=\blue{\bruch{1}{3}dy}[/mm].

Tauscht du nun in deinem 'alten' Integral die substituierte Funktion mit dem Term y aus, so musst du auch die Integrationsvariable austauschen. Anstelle von dx steht demnach nun im Integral [mm] \bruch{1}{3}dy. [/mm]

Somit sieht das Integral wie folgt aus:

[mm] \integral{\red{y}^{6} \blue{\bruch{1}{3}dy}} [/mm]

An dieser Stelle wird dann ganz einfach nach den bekannten Regeln integriert.

[mm] \integral{\red{y}^{6} \blue{\bruch{1}{3}dy}}=\bruch{1}{3}*\bruch{1}{7}*y^{7}+c [/mm]

Achtung: Am Ende der Integration das zurücktauschen des Integranden (resubstituieren) nicht vergessen, sonst stimmt das Integral nicht.

[mm] \bruch{1}{3}\bruch{1}{7}y^{7}+c=\green{\bruch{1}{21}(3x-5)+c} [/mm]

(c ist die Integrationskonstante, welche bei unbestimmten Integralen IMMER mitzuschreiben ist!)

Hoffe, das war einiger Maßen einleuchtend. :-)

Gruß,
Tommy

Bezug
                                
Bezug
Integration durch Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:53 So 05.11.2006
Autor: HJKweseleit

Zusatzbemerkung:

Wenn Integrieren so einfach ginge wie zu Anfang versucht, könnte man jede Funktion spielend leicht integrieren:
Den Integranden (auch die wildeste Funktion) einfach y nennen. Nun nach der (falschen) einfachen Regel integrieren: Gibt immer [mm] \bruch{y^{2}}{2}; [/mm] jetzt einfach wieder für y den Term einsetzen.

Klar, dass es so nicht geht - oder?

Bezug
                                        
Bezug
Integration durch Substitution: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:53 So 05.11.2006
Autor: TRANSLTR

Danke Leute!Vielen Dank!
Ich glaub' jetzt kapier' ich's langsam....

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]