www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegration durch Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Integration durch Substitution
Integration durch Substitution < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration durch Substitution: Hausaufgabe
Status: (Frage) beantwortet Status 
Datum: 17:16 Mo 05.02.2007
Autor: Kristof

Aufgabe
Berechnen Sie das Intergral mit der angegebenen Substitution.
a. )  [mm] \integral_{0}^{2}{\bruch{4x}{\wurzel{1+2x^2}} dx} [/mm] ;
        g (x) = 1 + [mm] 2x^2 [/mm]

b.)   [mm] \integral_{0}^{1}{x^2*e^x^3+1 dx} [/mm]

Hallo,
Habe mal wieder ein riesen Problem.
Haben heute in Mathe mit Substitution angefangen und ich habe um ehrlich zu sein kein Wort verstanden.
Zuerst mal eine Allgemeine Frage, was ist eine Substitution, bzw. was möchte ich damit erreichen?

Habe es so verstanden, dass bei schweren Ausgangsfunktionen die Substitution helfen kann die Stammfunktion zu finden. Richtig?

Naja,
ich fange erstmal mit Aufgabe a.) an.
Hier muss ich allerdings sagen das ich die nicht konnte. Hatte aber eine Lösung, wobei mir hier auch Fragen aufkommen.
Aber naja.

[mm] \integral_{0}^{2}{\bruch{4x}{\wurzel{1+2x^2}} dx} [/mm]

Substitution : g (x) = 1 + [mm] 2x^2 [/mm] und f (t) = [mm] \bruch{1}{\wurzel{t}} [/mm]
Hier kommt schon gleich die 1. Frage.
Wie komme ich bitte auf f (t) = [mm] \bruch{1}{\wurzel{t}}? [/mm]
Gibt es da irgendeinen Weg um das herauszufinden?

Ableitung : g '(x) = 4x

Nun zur Durchführung der Intergration :

[mm] \integral_{0}^{2}{\bruch{4x}{\wurzel{1+2x^2}} dx} [/mm]

= [mm] \integral_{0}^{2}{\bruch{1}{\wurzel{1+2x^2}} * 4x dx} [/mm]

Bereits hier stellt sich mir die Frage, wozu es nötig ist im Zähler das 4x gegen die 1 zu ersetzen um den Bruch dann mit 4x zu multiplizieren, dass verstehe ich nicht :-(

= [mm] \integral_{0}^{2}{f(g(x)) * g'(x) dx} [/mm]

Auch hier weiß ich nicht wieso das der Fall ist :-(

= [mm] \integral_{g (0)}^{g(2)}{f(t) dt} [/mm]
= [mm] \integral_{1}^{9}{\bruch{1}{\wurzel{t}}dt} [/mm]

Davon nun die Stammfunktion und es in den Grenzen von 1 bis 9 ausrechnene.

= 2 [mm] \wurzel{t} [/mm] ist die Stammfunktion, dieses nun in den Grenzen von 1 bis 9 :

= 4

Nun zur 2. Aufgabe.
Da komme ich nicht wirklich weit :-((
b.)

[mm] \integral_{0}^{1}{x^2*e^x^3+1 dx} [/mm]
Substitution :  g(x) = [mm] x^3+1 [/mm]
                       g'(x) = [mm] 3x^2 [/mm]

Hier weiß ich gar nicht wie ich weitermachen muss.
Denn mit fehlt ja dieses f (t) =


Wäre lieb wenn ihr mir hier helfen könntet.
Bin voll verzweifelt, muss die Hausaufgaben irgendwie bis morgen fertig bekommen, will es aber auch verstehen *grrrr*

Hoffe ihr könnt das verständlich erklären.
MfG
Kristof

        
Bezug
Integration durch Substitution: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 18:19 Mo 05.02.2007
Autor: Zwerglein

Hi, Kristof,

> Berechnen Sie das Intergral mit der angegebenen
> Substitution.
> a. )  [mm]\integral_{0}^{2}{\bruch{4x}{\wurzel{1+2x^2}} dx}[/mm] ;
> g (x) = 1 + [mm]2x^2[/mm]

  

>  Zuerst mal eine Allgemeine Frage, was ist eine
> Substitution, bzw. was möchte ich damit erreichen?
>
> Habe es so verstanden, dass bei schweren Ausgangsfunktionen
> die Substitution helfen kann die Stammfunktion zu finden.
> Richtig?

Richtig. Substitution wird verwendet, wenn man dadurch aus einer schwierigen, fast nicht zu integrierenden Funktion eine einfachere "machen" kann.
  

> [mm]\integral_{0}^{2}{\bruch{4x}{\wurzel{1+2x^2}} dx}[/mm]
>  
> Substitution : g (x) = 1 + [mm]2x^2[/mm] und f (t) = [mm]\bruch{1}{\wurzel{t}}[/mm]

Das mag die mathematisch exakte Methode sein; kürzer und übersichtlicher geht's so:

t = 1 + [mm] 2x^{2} [/mm] (***)

t ist also eine Funktion in der Variablen x. Die kann man ableiten, wobei man für die Ableitung nicht t' schreibt, sondern die Leibniz-Schreibweise verwendet. Das hat den Grund, dass man das x bei der Substitution ja sozusagen "ganz entfernen" und durch t  ersetzen mus, demnach auch das "dx".

Also: (***) abgeleitet ergibt:

[mm] \bruch{dt}{dx} [/mm] = 4x.  | * dx

dt = 4x*dx  (****)  
(Jetzt siehst Du auch, warum man bei Deiner etwas ausführlicheren Schreibweise das 4x zum dx "zieht": 4x*dx wird als Ganzes durch dt ersetzt.)

Naja und nun brauchst Du in der Wurzel nur (***) verwenden und hinterm
Bruchstrich (****) dt.

Die ursprünglichen Grenzen Deines Intervalls beziehen sich natürlich auch auf die "alte" Variable x:
x=0  und x=2.

Die "neuen" Grenzen beziehen sich auf die neue Variable t und werden daher auch mit Hilfe von (***) ausgerechnet:
t = 1 + [mm] 2*0^{2} [/mm] = 1
t = 1 + [mm] 2*2^{2} [/mm] = 9

Insgesamt also:

[mm] \integral_{0}^{2}{\bruch{4x}{\wurzel{1+2x^2}} dx} [/mm]

= [mm] \integral_{1}^{9}{\bruch{1}{\wurzel{t}} dt} [/mm] = ...

Ich denke mal, Deine Probleme lassen sich jetzt schon etwas reduzieren?!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]