www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration durch Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Integration durch Substitution
Integration durch Substitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:34 Do 01.12.2011
Autor: Unkreativ

Aufgabe
[mm] f=\integral_{}^{}{\bruch{dx}{\wurzel[3]{(3-2x)^2}}} [/mm]

Hallo,

komme leider bei dieser Aufgabe nicht weiter. Man soll das Integral durch Substitution lösen. Hab das nicht in der Tabelle gefunden aber ich schätze mal die Substitution muss so lauten:

u=3-2x  u'=-2 [mm] \Rightarrow dx=\bruch{du}{-2} [/mm]

dann ist ja f= [mm] \integral_{}^{}{\bruch{\bruch{du}{-2}}{\wurzel[3]{(u)^2}}} [/mm] , auflösen der Wurzel und des Doppelbruchs dann sieht das bei mir so aus: [mm] \integral_{}^{}{\bruch{du}{-2} u^\bruch{-2}{3}} [/mm]
Und ab da häng ich fest da ich keine Ahnung habe wie ich weiterrechnen soll.

Hoffe es kann mir jemand schön verständlich erklären was und warum als nächstes kommt :)

Mfg,

Unkreativ

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Integration durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Do 01.12.2011
Autor: fred97


> [mm]f=\integral_{}^{}{\bruch{dx}{\wurzel[3]{(3-2x)^2}}}[/mm]
>  Hallo,
>  
> komme leider bei dieser Aufgabe nicht weiter. Man soll das
> Integral durch Substitution lösen. Hab das nicht in der
> Tabelle gefunden aber ich schätze mal die Substitution
> muss so lauten:
>  
> u=3-2x  u'=-2 [mm]\Rightarrow dx=\bruch{du}{-2}[/mm]
>  
> dann ist ja f=
> [mm]\integral_{}^{}{\bruch{\bruch{du}{-2}}{\wurzel[3]{(u)^2}}}[/mm]
> , auflösen der Wurzel und des Doppelbruchs dann sieht das
> bei mir so aus: [mm]\integral_{}^{}{\bruch{du}{-2} u^\bruch{-2}{3}}[/mm]
>  
> Und ab da häng ich fest da ich keine Ahnung habe wie ich
> weiterrechnen soll.

Wir schreiben das letzte  Integral mal ordentlich hin:


[mm] \bruch{-1}{2}\integral_{}^{}{u^{\bruch{-2}{3}} du} [/mm]

>  
> Hoffe es kann mir jemand schön verständlich erklären was
> und warum als nächstes kommt :)

Für a [mm] \ne [/mm] 1 ist  [mm] \bruch{u^{a+1}}{a+1} [/mm] eine Stammfunktion von [mm] u^a [/mm]

FRED

>  
> Mfg,
>  
> Unkreativ
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Bezug
                
Bezug
Integration durch Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:07 Do 01.12.2011
Autor: Unkreativ

Hat funktioniert, bin aufs richtige Ergebnis gekommen vielen Dank :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]