www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegration mit gegebener Sub.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Integration mit gegebener Sub.
Integration mit gegebener Sub. < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration mit gegebener Sub.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Mo 10.12.2007
Autor: Sierra

Aufgabe
Berechnen Sie das Integral mit der angegebenen Substitution!
[mm] \integral_{0}^{-ln2}{ \bruch{e^{4x}}{e^{2x}+3} dx} [/mm]
[mm] t=e^{2x}+3 [/mm]

Hallo,

komme bei der obigen Aufgabe nicht weiter..

da [mm] t=e^{2x}+3 [/mm] ist klar, dass t'=2e^(2x) ist...
jedoch müsste ich ja nun
[mm] \integral_{t(0)}^{t(-ln2)}{f(z) dx} [/mm] bilden.

Die neuen Grenzen sind also auch klar, jedoch nicht die Bildung von f(z)..

Ich weiß ja quasi, dass [mm] \bruch{1}{2}\* \bruch{a}{z}\*2e^{2x} [/mm] --> [mm] \bruch{e^{4x}}{e^{2x}+3} [/mm] ergeben muss, wobei z = t entspricht...

Mein Problem liegt nun darin, wie ich im Zähler von [mm] 2e^{2x} [/mm] auf [mm] e^{4x} [/mm] kommen soll. Einerseits würde es für [mm] a=e^{2x} [/mm] ja passen, allerdings müsste ich in dieses x dann ja wieder auch t bzw. z einsetzen..

Bitte um Hilfe

Gruß Sierra

        
Bezug
Integration mit gegebener Sub.: Tipp
Status: (Antwort) fertig Status 
Datum: 15:03 Mo 10.12.2007
Autor: Loddar

Hallo Sierra!


Aus $t \ := \ [mm] e^{2x}+3$ [/mm] folgt auch: [mm] $e^{2x} [/mm] \ = \ t-3$ .

Damit kann man den Zähler wie folgt zerlegen / umformen:
[mm] $$e^{4x} [/mm] \ = \ [mm] e^{2x}*e^{2x} [/mm] \ = \ [mm] e^{2x}*(t-3)$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Integration mit gegebener Sub.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:49 Mo 10.12.2007
Autor: Sierra

Nach langer Denkzeit konnte ich mir deinen Tipp endlich zu nutze machen :)

Besten Dank!

Gruß Sierra

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]